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Abstract

Anticipatory Optimization (AO) is a method for
compiling compositions of abstract components (which
are themselves composite data structures such as arrays,
matrices, trees, record composites, etc.) so as to anticipate
non-optimal structures in the compiled code (e.g.,
redundant iterations) and to compile the abstract
components directly to optimized code without ever
producing the non-optimal structures. Anticipatory
Optimization is performed in the context of the domain
specific operators and operands (i.e., composites) and is
driven by the form and semantics of those operators and
operands. In contrast, conventional optimizing strategies
wait until the domain specific operators and operands
(i.e., composites) have been compiled into programming
language level code (e.g., C) before they even start the
optimization process. By this time, the data flow, variable
aliasing, and variable dependency knowledge implicit in
the domain specific operators and operands has been lost.
So, the first step in conventional optimization is to perform
a difficult analysis process to recover this lost
information, which will then be used to drive the
optimization process. AO avoids such difficulties by using
the implicit knowledge to directly generate optimized
code.

Key Words and Phrases: Abstraction, development
environments,  domain specific,  generators, optimization,
and reuse.

1.  The problem

The fundamental contribution of high level languages
(hll-s) to programming productivity was the ability of their
compilers to transform a compact representation of a
mathematical computation (i.e., an arithmetic expression
expressed in a mature notation borrowed from
mathematics) into an equivalent but expansive and
complexly interrelated series of assembly language
instructions. This saves the programmer a significant
amount of work because the mathematical expression is

simpler, is more natural to write, has fewer constraints, and
is more compact than its assembly language equivalent.
Other aspects of  hll-s have had significantly less impact.
For example, hll control constructs are not much more
compact nor easier to use than their assembly language
counterparts.

Over the years, small incremental improvements to
programming productivity have arisen through the addition
of new programming constructs (e.g., object oriented
constructs, multi-methods, functors, closures, etc.) but
none of these have provided as much of a boost as the
original innovation of hll expressions. Why? Should not
the simple addition of new higher level operators and
operands produce exactly the kind of programming
productivity improvement seen in the original hll boost?
(See Biggerstaff, 1993.) Unfortunately, other factors have
complicated the picture. (See Biggerstaff, 1994.) Indeed,
adding new higher level operators and operands has
improved programming productivity but at the cost of a
decline in the performance of the resulting code. Almost
without fail, as the level of abstraction has been raised, the
performance of the resulting code has declined to
unacceptable levels. And this has introduced a serious
roadblock to the application of abstraction based strategies
for increasing programming productivity. Why?

Figure 1 illustrates the problem. Candidate higher level
abstractions (e.g., graphic images) are inherently
composite data structures, which require iteration or
recursion for their implementation. Further, the operators
for such abstractions produce compositions of abstractions
that are already inherently composite. Thus, every
operation on such abstractions produces a non-atomic,
extended computation (i.e., iteration or recursion) because
the operands are extended, composite structures. And to
compound the problem, the ideal use of such abstract,
domain specific operators and operands is in expressions
that compose many such operations together.
Straightforward translation or interpretation of such
compositions of composites leads to highly redundant
iteration or recursion.
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Consider the example from Figure 1. Straightforward
compiling of such an expression could generate six
separate passes over the images. In contrast, a human
programmer would design only one pass over the images
and perform all of the operations within that pass.

The problem is further complicated because
conventional modes of compiling compositions preserve
the individual operations’ atomic boundaries in the
compiled code and thereby isolate the portions of
redundant code within these bounded chunks of compiled
code. Such conventional modes of compiling compositions
are based on a “substitute and expand” paradigm in which
each individual operation is compiled in isolation (i.e., in a
“context free” manner) and is therefore not sufficiently
influenced by other operations in the composite during its
compilation. Hence, conventional compiling strategies do
not produce opportunities for the redundancy in the
compiled code to be noticed by the compiler at the
compile time nor provide methods for reweaving the
compiled code in ways that break the contextual isolation
of the neighborhoods induced by the individual high level
constructs. Therefore, these conventional compiling
methods mostly prevent sharing of redundant code (e.g.,
sharing the iteration prefixes).

Just to complicate this problem, the boundaries of the
redundant portions of the compiled code do not correspond
to convenient programming language construct boundaries
within the compiled code. That is, to eliminate
redundancy, the compiler or post-compilation optimizer
might need to merge two loop iteration prefixes (i.e., the
“for( init; check; update)” parts of the loop) and manipulate
the semantics of the two loop bodies in order to properly
connect them. However, such connections depend on the
structure and semantics of the iterations, the structure and
semantics of the loop bodies, and the context in which the
loops occur. Conventional compiling methods are not
designed to deal with this kind of code integration.

The conventional alternative to solving this
optimization problem is to mop up the redundancy  (i.e.,
reweave the separate chunks of compiled code) after the
high level component constructs have been compiled into

conventional programming language constructs (and after
those high level abstractions have been eliminated by the
compiling process). So, conventionally,  the
implementation level code is rewoven to eliminate the
redundancies by conventional optimization strategies1 such
as “loop fusing” and “loop coalescing.” However, this
post-compilation approach leads to a further complication.
A large amount of complex inference (e.g., data flow,
dependency, and alias analysis) is usually required to
provide the information necessary to accomplish these
conventional optimization strategies. Ironically, this
approach is “recovering” some of the information that is
more directly inferable from the high level abstractions in
their pre-compiled forms. Worse, the recovery task
introduces the risk of missing legitimate optimizations
because of the inadequacy of the analysis tools (e.g., some
variable aliasing may be missed). Hence, post-compilation
optimization strategies often achieve mediocre results at a
great cost in processing time.

Thus, we have dilemma. If we introduce highly abstract
operators and operands into our programming notation to
increase our programming leverage, we either get poor
performance in the resulting code or a chance of
marginally acceptable programming performance at the
cost of developing extensive, expensive, and inherently
incomplete program analysis tools.

2.  The Solution: Anticipatory
Optimization

The solution is to transform the abstract composite
expression into a form that will compile directly into
optimal code by using the semantics of the abstract
operators and operands, thereby eliminating the need to
perform expensive and possibly only partially successful
analyses of the compiled code.

The AO method operates as follows: It performs
multiple2 distinct recursive walks of the abstract syntax
tree (AST). As it goes, individual transformations are
triggered by the pattern of domain specific operators and
operands at each subtree. These transformations may

                                                          
1 See Bacon, et al. 1994. Per conventional usage, “loop fusion” is the

merging of two loops at the same level of nesting, and  “loop coalescing”
is the merging of two loops, one nested within the other. Both depend on
fully determining the data flow dependency and aliasing relationships of
data items within the body of the loop. The complexity of this analysis
arises from, among other reasons, the possibility of data aliasing, i.e., one
variable masquerading in non-obvious ways as another variable because
of the complexities allowed by the programming language, or a data
reference expression referring to a data location whose exact identity
requires an inference process.

2 I will use four passes for this domain example, but other domains
could require a fewer or greater number of passes.
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rewrite the tree (e.g., transform one abstraction such as an
image into a simpler abstraction such as a pixel); add
property tag adornments to the AST expressions  --
adornments that anticipate how those expressions might be
implemented (e.g., an image might be implemented as an
array of pixels); migrate the adornments about the tree;
and/or merge the adornments in ways that anticipate
optimizations in the eventual implementation (e.g., sharing
of loop prefixes).

Overall, the various transformations alter the AST in a
step by step manner that maps abstractions into
programming constructs, anticipates implementation
constructs for composites (e.g., loops), and migrates the
anticipatory adornments up the AST merging them
together (i.e., making anticipatory optimizations) based on
the semantic nature of the operators and operands over
which they migrate. Once this migration and merging is
complete, the optimized code is generated directly from
the adorned domain specific expression. I will look at an
example of AO operating on a domain specific expression
but first, I need to explain a bit about the domain.

3.  An Example

3.1 Domain specific definitions

The following concrete example is drawn from the
domain of graphics imaging software and is based on an
imaging notation specific to that domain called the Image
Algebra (IA). (See Ritter, et  al. 1990, 1993, 1996.) This
domain is just a convenient domain in which to cast
examples of the technique because the domain notation is
already defined and mature. However, the AO method is
not limited to this specific domain. It is applicable to
abstract operators and operands from any application
domain (e.g., business software, system software, office
software, networking, telephony, etc.). Similarly, while the
small example will focus on array- and matrix-based
implementations, the general AO method can
accommodate other implementation composites (e.g., lists,
collections, trees, record composites, etc.) through the use
of different adornments and transformations.

In the following example, we will use the so-called
backwards graphics convolution operator ⊕  that defines
how the matrix-like operand on the right, which in the
Image Algebra is called a “Generalized Template” or
“Template3” for short, is applied to each pixel
neighborhood in the image operand on the left hand side.
For an image a and template t, the behavior of this
operator is defined as follows:

                                                          
3 Not to be confused with the term “template” as used in

programming languages like C or C++.

( ) {( , ( )): ( ) ( ) ( ), }a t a ty b y b y x x y Yy
x X

⊕ = = ∗ ∈
∈
∑

∆

where X and Y are coordinate sets, X being the h-
dimensional coordinates for all of the pixels in the image a
and Y the k-dimensional coordinates for all of the pixels in
the image resulting from the operation (shown as the image
b in the definition).  ty is a function which maps Y® (X, F)
where F is a mathematical field giving the weights to be
multiplied with the pixel values in the matrix
neighborhood of the current pixel of a. In the examples of
IA template matrices that I will show, only the F values are
explicitly shown. The mapping of the Y coordinates into
the X coordinates is implicit in the physical geometry of
the matrix but is not explicitly defined. In general, this
coordinate mapping is more complex than implied by these
simple examples but for the purposes of sketching the
implementation, simple examples will be adequate.

So let us look at an example template -- one that
performs (part of) Sobel edge detection in an image.

 yt =
−
− ◊
−

















1 1

2 2

1 1

φ

φ
where the diamond indicates the reference point in ty

that corresponds to the current pixel in the image with
which ty is being convolved. This means that for any pixel
[y1, y2] in the image a, the summation in the definition
should produce the following expression as the value for
pixel b[y1, y2]  in the result:

(a[y1-1, y2 -1] * (-1) +  a[y1, y2 -1 ] * (-2) +  a[y1+1, y2 -1] * (-1) +

  a[y1-1, y2 + 1] *1  +  a[y1, y2 + 1 ] * 2  +  a[y1+1, y2 +1] * 1).

So, given these semantics for the ⊕  operator, let us
look at how we use the knowledge of these semantics to
directly generate optimized code. The example follows the
step by step reduction of the Image Algebra statement for
performing Sobel edge detection:

[ ]b a s a s= ⊕ + ⊕ ′
1 2

2 2
/

( ) ( )

where

· a is a gray-scale image (of dimensions mXn) in which
we hope to detect edges,

· s and s’ are generalized IA templates that will be
applied to every pixel of a,
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· ÅÅ is the generalized backward convolution operator4

that performs the application of the templates s and s’
to all pixels in a,

· + is the conventional plus5 operator (on the
mathematical field induced by the pixel’s fundamental
type) applied to corresponding pixels in ( )a s⊕  and

( ' )a s⊕ , and

· the superscripts represent the power operator, here
applied to all pixels in ( )a s⊕  and ( ' )a s⊕ .

Without going into too much detail at this moment on
exactly how they work, s and s’ are matrices that are
defined as:

 and   s'=
− − −

◊
















1 2 1

1 2 1

φ φ

where the diamond centers the transform on the
particular pixel of the image a that is currently being
operated upon and the nulls indicate that the corresponding
pixels in the image do not participate in this operation. The
constants are weights to be multiplied with the pixels to
which they correspond (for each specific placement of the
diamond on a pixel of a). For each centering of a
template’s diamond cell on a pixel of the image a, the
operator ⊕  defines the formula for computing the pixel
corresponding to the diamond cell in the resulting image.
More specifically, the operator ⊕ defines a summation of
the products of each weight in the template matrix times its
corresponding pixel in the image a. Different Image
Algebra operators will induce different pixel level
arithmetic formulas. Finally, without loss of generality, the
example is simplified by the assumption that each pixel has
a single gray scale channel of unspecified precision.

3.2 AO processing of the example

For the moment, we will ignore the first two stages of
AO, which just manipulate the expression to maximize the
optimization opportunities. The reduction process starts at
the top of the expression tree looking for patterns that will
trigger transformation rules and recursively descends the
tree until it finds a subtree that will trigger a
transformation. No transformation can fire until the

                                                          
4 This is one of a small number of basic operators that are claimed to

perform all necessary image operations.

5 In the IA notation, plus is overloaded to allow expressing the
addition of images. The compilation process will reduce this addition to
the addition of integer pixel values.

reduction engine gets to the image a within the subtree
( )a s⊕ , at which point the transformation

CompositeLeaf6 causes the creation of a translator
generated variable p of type pixel with an attribute
adornment of the form _ ( :( [ :int, :int]: ))Q p a i j pixel∀ 7 that
replaces a in the subexpression, producing:

b

p Q p a i j pixel s

a s

=

∀ ⊕
+

⊕ ′

















1 2

2

2

/

(( _ ( :( [ :int, :int]: )) ))

( )

The adornment _ ( :( [ :int, :int]: ))Q p a i j pixel∀  anticipates

how p will compile and the relationship of the compiled
form of p to the iteration over a. That is, p will compile
into expressions of the form a[i,j]   where i and j  are of
type int and index the image a. The type of a[i,j]  is pixel.
Further, i and j  will be the loop iteration variables and will
range over all pixels in a. This quantifier adornment is just
shorthand for the essential information about the
anticipated compiled form. Importantly, by being
expressed as an attribute of p, it avoids altering the AST
structure of the expression which reduces the case
complexity of the transforms. The adornment has the
advantage that it avoids premature commitment of the
abstract operator expressions to implementation level
code, it lends itself to the manipulations that are required
by the migration and merging of the quantifier adornments,
and it allows the translation system to change course if
later global interactions reveal greater opportunities for
optimizations.

No further transformation progress can be made on the
leaf p, and the transformation engine moves up the tree to
the expression ( )p s⊕ whereupon the transformation

BackwardConvolutionOnLeaves fires, moving the
attribute up to the expression level.

b

p s Q p a i j pixel

a s

=

⊕ ∀
+

⊕ ′

















1 2

2

2

/

(( )_ ( :( [ :int, :int]: )))

( )

The ( ' )a s⊕  operation will be transformed

                                                          
6 Transformation names are included to relate to later architectural

descriptions.

7 I will use the publication form _AttrLabel(AttrExpression)  to
represent attribute adornments of expressions. In the examples in this
paper, I will use only one attribute label _Q for “quantifier.” Such
adornments are not part of the domain specific expression per se but are
associated translation state information that will be manipulated by the
set of transformations operating on the target expression.

s =
−
− ◊
−

















1 1

2 2

1 1

φ

φ
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analogously producing the AST subtree:

b

p s Q p a i j pixel

q s Q q a k l pixel

=

⊕ ∀
+

⊕ ′ ∀

















1 2

2

2

/

(( )_ ( :( [ :int, :int]: )))

(( )_ ( :( [ :int, :int]: )))

The power of 2 operator belongs to a class of operator
that has an associated transform (i.e.,
ArithOpsOnComposites)  that recognizes the quantifier
adornment on its operand and simply migrates the
adornment to its level in the AST. This produces a tree that
looks like:

b

p s Q p a i j pixel

q s Q q a k l pixel

=

⊕ ∀
+

⊕ ′ ∀

















1 2

2

2

/

( ) _ ( :( [ :int, :int]: ))

( ) _ ( :( [ :int, :int]: ))

The + operator belongs to a class of operator with an
associated transformation (i.e., ParallelOpsComposite-
Operands) that can handle the special case condition that
the image operands iterated over by p and q are identical
(i.e., both iterate over a ). This transformation merges the
quantifiers and migrates the results to adorn the +
operation. So, the AST now looks like:

b
p s p s

Q p a i j pixel
=

⊕ + ⊕ ′
∀











1 2
2 2

/

(( ) ( ) )

_ ( :( [ :int, :int]: ))

The square root operator belongs to the same operator
group as the square operator so this triggers the migration
of the quantifier adornment to the square root operation
(again using the ArithOpsOnComposites transform).

[ ]b
p s p s

Q p a i j pixel
= ⊕ + ⊕ ′

∀

















1 2
2 2 /

( ) ( )

_ ( :( [ :int, :int]: ))

Next, the AO algorithm encounters the leaf composite
b8and adorns it again using the transformation
                                                          

8 Actually, we are describing this out of the actual execution order to
simplify the expression forms we have to show in this example. In
reality, b would be the first leaf encountered and  adorned. That
adornment would be inert through all of the steps described so far and
would not be involved in a merge until both subtrees of the assignment
operator (=) had been processed and the AO method  re-visits the

CompositeLeaf.

[ ]

[ ]

c Q c b r s pixel

p s p s

Q p a i j pixel

_ ( :( [ :int, :int]: ))

( ) ( )

_ ( :( [ :int, :int]: ))

/

∀
=

⊕ + ⊕ ′
∀

















1 22 2

Then, the assignment operator triggers the
transformation ParallelOpsCompositeOperands  to
merge and migrate the quantifier adornments on the left
and right hand sides of the assignment. In this case, the left
and right operands are different (i.e., the pixel c in b and
pixel p in a), so the attribute adornment must express the
idea that while the abstractions are distinct, the iteration
and iteration variables i and j over their containers (i.e., b
and a) can be shared9.

[ ]c

Q c p b a i j pixel

p s p s=

∀

⊕ + ⊕ ′









1 2
2 2

/

( ) ( )

_ ( :( [ :int, :int]: ))

The item item1 2  groupings in the adornment express
the idea that the composites must be processed in parallel.
The shared items such as the subscripting variables [i,j]  are
shown only once. At this point, the overall expression can
be turned into code. The quantifier and the declarations of
composites to which it refers (e.g., a) supply all of the
information necessary to produce the loop iteration code
(including the declarations for the loop iteration variables i
and j). They also supply the necessary information to
translate the various abstractions such as c and p into code.
It tells the compiler that c and p are coordinated through
the loop iteration variables i and j.

From this adornment, GenerateLoopStructure will
generate the form:

for (i=0; i < m; i++)
       for (j=0; j < n; j++)

               b[i,j] = sqrt(power((a[i,j] ⊕  s),2) +

                            power((a[i,j] ⊕  s’),2));

                                                                                              
assignment operator for the last time (i.e., on the last return from
processing subtrees). The level of complexity of this reality seems
excessive and adds nothing to the example. Hence, I have reversed the
order.

9 Due to space limitations, I have made the simplifying assumption
that the images b and a have the same dimensions. Such simplifications
are not inherent to the general method.
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This expression can be further reduced (via
GenerateCodeForPower, GenerateCodeForFunctions,
and ReduceConvolution-Operator ) to

for (i=0; i < m; i++)
      for (j=0; j < n; j++)
             { t1 = gcon10(a,i,j,s);
               t2 = gcon (a,i,j,s’);
               b[i,j] = sqrt(t1*t1 +  t2*t2)  }

The above form is the final result using the techniques
and transformations discussed in this paper. However, in
point of fact, other AO transformation techniques not
discussed in this paper can further reduce this form to:

for (i=0; i < m; i++)
      { im1=i-1; ip1= i+1;
        for (j=0; j < n; j++)
             { if(i==0 || j==0 || i==m-1 || j==n-1)
                  then b[i, j] = 0;
                  else { jm1= j-1; jp1 = j+1;
                           t1 = a[im1, jm1] * (-1) + a[im1, j] * (-2) +
                                  a[im1, jp1] * (-1) +  a[ip1, jm1] *1  +
                                   a[ip1, j] * 2  +  a[ip1, jp1] * 1;

                          t2 = a[im1, jm1] * (-1) +  a[i, jm1] * (-2) +
                                 a[ip1, jm1] * (-1) +   a[im1, jp1] *1  +
                                 a[i, jp1] * 2  +  a[ip1, jp1] * 1;

            b[i, j] = sqrt(t1*t1 + t2*t2 )}}}

Because of space limitations, we will not describe in
this paper how this last optimization step is accomplished.

4. The AO method

4.1 Overview

The AO method is a multi-phase walk of the AST in
which transformations are triggered at each subtree based
on the pattern of the domain specific operators, operands,
and attributes of the nodes within that subtree, or within its
scope, or within declarations referenced from that subtree.
These transformations modify the tree in various ways.
They may map domain operators or operands into
conceptually lower level domain operator or operands.
They may create new variables for the generated code.
They may adorn the subtree with attributes that anticipate
how the operators and operands will be implemented. They
may merge the adornments thereby anticipating
optimizations in the target implementations. They may
reorganize the domain specific code to foster improved

                                                          
10 The function gcon is the general convolution function which uses

s  (or s’) to compute the convolution value for the pixel a[i,j] .

optimizations in the generated implementations.

4.1.1 Domain abstraction hierarchy

The domain specific operators and operands are
organized into an abstraction hierarchy (see Figure 2),
each node of which represents a set of AST patterns that
will compile into target code with the similar data
structure, flow and dependency patterns.

Result

Operator
/Function

Figure 3

ParallelOps Data Flow

Operands

For example, instances of the class ParallelOps have the
kind of data flow pattern shown in Figure 3 in which each
result value within some composite structure (e.g., an
array) is dependent upon corresponding values in the
composite operands and upon no other values (except
perhaps constants). Further, the operator or function is
mathematically pure and does not produce any side effects.

The convolution operators, on the other hand, have a
more complex dependency structure (shown in Figure 4)
that anticipates an implementation consisting of an outer
loop (or loops) within which each convolution window is
computed by another nested loop.
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OperandsResult Operator
/Function

Figure 4

Convolution Ops Data Flow
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Thus, the abstraction hierarchy provides:

1.  An organizational structure in which to attach the
transformations that will translate and optimize
expressions of domain specific operands represented by
the abstraction  (e.g.,  the transformation ParallelOps-
CompositeOperands used in the earlier example is
attached to the “ParallelOps” abstraction),

2.  An implied set of data flow and dependency
assumptions (e.g., as shown in Figures 3 and 4) that will
be true for all domain specific expressions that are
instances of the abstraction represented by the node and
therefore, that will be the assumptions built into all
transformations that can potentially apply to those
instances,

3.  A pattern characterizing the AST structure of the
current node (e.g., “Image ConvolutionOp IATemplate”),
which specifies some but not all of the triggering
conditions for applicable transformations, and

4.  A framework for transformation  inheritance (e.g.,
if all transformations attached to the node “Num Power
Num” abstraction fail to trigger, then transformations
attached to “Num ArithOp Num” will be tried, and so forth
until some transformation triggers or until all
transformations up that leg of the abstraction hierarchy
have been tried and have failed to trigger).

4.1.2 Phased translation strategy

There is a second important organizing principle. The
transformations are organized into distinct phases, each of
which has a well defined but distinct translation purpose.
The simplified AO process described here comprises four
phases with the following translation purposes:

1.  Inline any domain specific functions that according to
programmer attached attributes (e.g., _inline attribute) will
enhance optimization possibilities.

2.  Move out of line subexpressions that will impede
optimization (e.g., a convolution operator applied to an
expression containing a convolution operator).

3.  Successively reduce composite abstractions (e.g.,
images) to lower level composites (e.g., pixels) and
eventually to programming language constructs (e.g.,

integers). Simultaneously, create attribute adornments that
anticipate the extended computation required to operate on
all elements of each composite (e.g.,
_ ( :( [ :int, :int]: ))Q p a i j pixel∀ ) . Then migrate those adornments
up the expression tree and merge them, thereby
anticipating optimizations for those computations.

4.  Generate optimized code from the combination of
operators, operands, and their associated adornments.

As a consequence of this organization, each
transformation is phase specific and performs a relatively
simple operation. Table 1 shows the relationships between
the example transformations, the abstraction hierarchy, and
the phases.

4.1.3 Modifiers within optimization tags

User-defined modifiers can be added to any quantifier
tag or associated directly with portions of the target
program. For example, the modifier
_PromoteAboveLoop(j, ConstantExprOf(i)) will convert
arithmetic expressions of i and constants into assignments
and move them just above and outside of the loop
controlled by j. Modifiers serve as optimization hints (or
more operationally, as invocations of deferred optimizing
transformations). They are used during code generation to
produce variations or optimizations in the final code.
Modifiers anticipate optimizations that cannot be executed
until later when the generated code actually exists. Such
modifiers stage the optimization steps to be performed at a
future point in code generation.

The modifiers express anticipated optimizations in
abstract terms  (i.e., without reference to the exact
structural forms of the generated code). For example,
ConstantExprOf(i) will match any arithmetic expression
involving only i and constants. This simplifies the
optimization case logic by reducing an infinite variety of
forms that are conceptually equivalent but structurally
varied to a small number of abstract cases.

Modifiers can be event-driven  and thereby can be
associated with user-defined optimization events (e.g.,
SubstitutionOfMe) whose occurrence will trigger the
modifier’s execution, e.g., _On(SubstitutionOfMe,
_Fold0). The final code for the example shown earlier
contains loops that have been unwrapped into formulas
and index expressions that have been promoted through
mixtures of simple and event-driven modifiers.
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Phase 0 Phase 1 Phase 2 Phase 3

Attached To Inline DS
Functions

Remove Impediments Anticipate Optimizations Generate Code

Root InLine BreakNestedConvolutions

Composites CompositeLeaf ReduceLeafAbstractions
ReduceAbstractDeclarations

Operators GenerateLoopStructure

ArithOps GenerateCodeForFunctions

(Num Power Num) GenerateCodeForPower

ParallelOps ParallelOpsCompositeOperands
ArithOpsOnComposites

ConvolutionOps BackwardConvolutionOnLeaves
ForwardConvolutionOnLeaves

ReduceConvolutionOperator

Table 1: Overview of AO Method

4.2 Example Transformations

Let us examine two AO transformations to provide a
sense of how they are structured and how they operate.
The Phase 2 BackwardConvolution-OnLeaves transform
recognizes expressions like ( _ ( :( [ :int, :int]: )) )p Q p a i j pixel s∀ ⊕

and moves the quantifier up to the convolution operator
level in the AST. The pseudo-code is:

Define Transform BackwardConvolutionOnLeaves(  ) _Phase(2)
{if (Pattern(`((($pix : Pixel _Q( $Quantifier)) Ó $template :
                   IATemplate) & both $pix and $template are leaves)))
then { Move the _Q($Quantifier) adornment from the $pix
           operand to the ($pix  Ó $template) expression;
           return(True)}
else return(False) }}11

The first thing that the transform does is to call Pattern
to check the structure and type information of the current
subtree in the AST, and to bind parts of the expression
subtree to transformation variables. The conditions for the
transform to succeed are that the left operand, which is
bound to $pix, is of type Pixel and the right operand,
which is bound to $template, is of type IATemplate.
Further, both must be leaves of the AST and the $pix
operand must have a quantifier adornment, whose value is
bound to $Quantifier. If all of these conditions are true, the
transformation removes the adornment on $pix, re-attaches
it at the expression level, and returns true indicating
success. If any of these conditions fail, the transformation
as a whole will fail and processing of the current node of
the tree (if any) will have to be accomplished by some
other transform from farther up the data abstraction
hierarchy. While not all transforms are this simple, most
are simple with a small amount of localized processing.

                                                          
11 The symbol Ó represents the class of all convolution operators.

 Now let’s look at the Phase 3 (code generation)
transformation that actually generates the loop prefix
structure -- GenerateLoopStructure. In truth, this
transformation is fairly large with several distinct cases
(e.g., handling arrays of different dimensions). These
extensions are beyond the space limits of this paper. Thus,
I will present a simplified version that reveals the essential
character without the excessive details.

The processing is pretty straightforward. By the time
AO method Phase 3 starts, the quantifiers will have
migrated up the expression tree as far as they can go and
will have merged with other applicable quantifiers12. Thus,
this transform just detects expressions ($Expression) with
quantifiers on them, replaces all abstract references from
the $Abs list (e.g., the pixel p from the example) with
corresponding implementation references from the
$CompositeDS list (e.g., a[i,j]  from the example) and
wraps the resulting expression with the appropriate loop
prefix structure. $GetDimension is a generation-time
function that fetches the dimensional information
(constants or code) from the AST for use in constructing
the loop prefix.

Define Transform GenerateLoopStructure(  ) _Phase(3)
{if ( Pattern( `($Expression _Q( "$Abs : ($CompositeDS[$Idx1:

                       int, $Idx2: int] : $CompositeDSType) )) ))

then { Generate declarations for $idx1 and $Idx2 and
           put them in the scope of current statement;
           Replace each $Absk reference in $Expression with
                  `($CompositeDSk[$Idx1, $Idx2]), where $Absk and
                  $CompositeDSk are the corresponding elements on
                  the $Abs and $CompositeDS lists;
          Replace current subtree with

                                                          
12 Variations induced by composites that do not perfectly correspond

can be handled by AO but are beyond the scope of this paper.
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                `{(for($Idx1=0;
                      $Idx1 < ($GetDimension($CompositeDS, 1) - 1) ;
                      ++ $Idx1)
                       {(for($Idx2=0;
                           $Idx2 < ($GetDimension($CompositeDS, 2)-1) ;
                           ++ $Idx2)

            $Expression }}
            Return(True); }
. . . Code for other cases elided . . .
 else return(False); }

5. Related Research

5.1 Generation systems

The Draco program generation system shares the
anticipatory, domain oriented optimization philosophy of
AO, but its published descriptions do not mention any AO-
like optimization methods for melding portions of the code
(e.g., loop prefixes). (See Neighbors 1980, 1983, and
1989.) Typically, Draco optimizations are small-grained,
forward refinement-based rewrites of expressions such as
rewriting “power(x,2)” as “x*x”.

Aspect Oriented Programming (AOP) shares with AO
the intention and the accomplishment of reweaving code
for efficiency. (See Kiczales, et al., 1997.) The main
difference appears to be that AOP performs its code
reweaving in a mixture of problem domain and
implementation level constructs (e.g., the AOP
programmer can write explicit looping constructs). By
contrast, AO prevents the programmer from writing
implementation level code (e.g., explicit looping
constructs) by hiding the implementation form. He cannot
know what the implementation structures look like because
they are indeterminate until the generation-time moment at
which they are actually created. By this tactic, AO avoids
open-ended searches (e.g., data flow analysis) that are
difficult to avoid in a mixture of domain level and
implementation level constructs.  In AO,  implementation
level inference is handle via the annotation tags, which are
logically separated from the program code. They serve as a
design blackboard where automated program reweaving
strategies can be mapped out and revised without altering
the structure of the program code until the moment when
the final rewoven implementation code is generated as
whole cloth.

Other generation methods address complementary
aspects of the problem. See Batory, Novak, and Smith.

5.2 Conventional optimization techniques

Each of the techniques that I have discussed in the AO
method have their analogs in the conventional
programming language context. (See Bacon et al., 1994.)

with the fundamental difference being that AO achieves
the optimizations directly, using the data flow and
dependency information implied by the domain specific
operators and operands (e.g., addition on images) and
never creates the non-optimized form of the code.
Conventional optimization, on the other hand, starts with
the non-optimal (i.e., “compiled”) code in a conventional
programming language and then recovers the flow and
dependency information -- information that is more
directly available from the domain specific operators and
operands -- via complex analysis techniques that induce
large, open-ended searches. Further, conventional
optimization often misses opportunities for optimizations
because of the difficulty of the inference problems (e.g.,
variable alias analysis). AO translation rules are
specifically designed to prevent aliasing problems that
would inhibit optimizations. In contrast, the freedom of a
general programming language provides no such discipline
and therefore, it is this very freedom that is the source of
many difficult optimization problems.

AO avoids such difficulties by recasting the problem
into a form handled by simpler and more effective
methods.

5.3 Optimization in APL, FORTRAN, and
parallel processing languages

While optimization in APL, FORTRAN, and parallel
processing contexts can often achieve a subset of the
optimization results of AO, the methods are fundamentally
different, sometimes complementary,  and generally more
restrictive than AO optimization. Representative of the
techniques that optimize looping over expressions of high
level operations on arrays and matrices are the APL
techniques based on the general idea of “steppers.” (See
Guibas and Wyatt, 1978 and Ju et al , 1992.)

Stepper-like optimization methods allow the direct
fusing of loop iteration prefixes for loops whose ranges
and increments match exactly, or direct fusing of subloops
that are decomposed specifically to achieve the matches. A
stepper is basically a characterization of loop iteration
behavior in terms of the array axis, starting index, stride
(i.e., increment), and shape of target array. Operationally, a
generic stepper expression is attached at the top of an APL
expression tree. It is propagated down the tree and
transformed by operator specific transformations  for each
operator that it passes through on the way to the
expression’s leaves. The resulting steppers at the leaves
contain the data access pattern of the associated source
array that is required to compute an element of the target
array in the expression. These patterns are then used to
generate the set of common loop prefixes and the accessor
expressions for each of the arrays used in the expression.

The main difference between such APL optimization
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methods and the AO method is the operational context,
with AO operating in the domain context and APL
operating in the programming language context. Thus, any
optimization opportunity that depends on the use of
domain specific knowledge (e.g., the data flow implied by
convolution) or user-defined knowledge is beyond the
built-in APL techniques. The example seen earlier could
not be handled directly by APL optimization techniques.
Nevertheless, these techniques are complementary to AO
and could be easily incorporated through transformations
thereby providing the ability to deal with matrix domain
abstractions that have different shapes.

6. Conclusions

There are several key innovations in AO. 1) Annotation
tags that separate the optimization planning from the actual
code structure and thereby reduce the variations in control
and data forms that the transformations must deal with; 2)
modifiers that capture anticipated optimization
transformations that must be deferred until the code to be
optimized actually exists; 3) inference rules (i.e.,
transformations) that operate strictly in the domain of the
problem oriented operators and operand types, 4)
modifiers expressed in abstract terms such that each
modifier expression applies to an infinite number of
variations of the concrete implementation code thereby
simplifying AO’s case logic; 5) meta-optimization
transformations that reconcile, make consistent and order
sets of interdependent modifiers and thereby allow
reasoning about the optimization process itself before it is
actually executed; 6) the encoding of implicit data flow
and data dependency relationships in the implementations
of the domain specific operators and operands via the
transformation inheritance hierarchy and the
transformations that are attached to nodes of that
hierarchy; and 7) event-driven modifiers that allow
interdependent, anticipated optimizations to be organized
on a time line that assures their consistent application.

AO is an improvement over conventional optimization
and generation techniques because it eliminates the open-
end searches (e.g., in data flow, dependency and alias
analysis) required by conventional optimization strategies
as well as the open-ended rule searches  required by large,
flat corpora of optimization rules. It recasts the
optimization problem into a form that is handled by much
simpler and more effective methods. AO opens up
opportunities for true domain specific languages without
the burden of poor performance of the compiled code or
poor performance of the generator because of open-ended
searches.
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