

Copyright Software Generators, LLC, 2013

Reuse: Right Idea, Wrong Representation?

Ted J. Biggerstaff

Software Generators, LLC

Austin, Texas USA

dslgen at softwaregenerators dot com

Abstract—This paper introduces the DSLGenTM (Domain

Specific Language Generator), an execution platform

independent program generation system that produces

optimized code (without reprogramming) for multiple

execution platform architectures. The target computation is

specified in a programming language independent,

Implementation Neutral Specification (INS) form and need not

ever be changed unless the target computation changes. The

target execution platform architecture is specified separately in

terms of high level domain specific descriptors. Only the

platform specification needs to change when moving to a new

platform. Key to this solution is the introduction of new

representational abstractions for the early stages of generation.

The overall conclusion from this research is that the new

representational abstractions significantly amplify the

reusability of the underlying componentry.

Keywords -- associative programming constraints, natural

and synthetic partitions, design patterns, logical and physical

architectures, implementation neutral specification, domain

specific languages, inference, problem domain inference, partial

evaluation.

I. INTRODUCTION

A long standing problem in reuse has been amplifying
the reusability of components so that a small set of
components can be composed to form many programs. In
many cases, two components that conceptually should be
compatible are often not for relatively trivial reasons. For
example, composing two components that perform two
sequential transformations on data may execute too slowly
because of underlying computational redundancies or
because sequential operations have been imposed on the
operations where some degree of parallelism would make
them sufficiently fast.

Many techniques have been tried to solve this problem
with varying degrees of success but none can be said to
really solve the amplification problem in any general or
sufficient sense.

II. THE UNDERLYING PROBLEM

After struggling with this problem for a long time, I have
concluded that the key difficulty lies in the representation
used to express reusable components. Virtually all
component representations are either based on programming
languages (PLs) or based on abstractions thereof. This, I
believe, is the underlying problem. PL representations (at
any level of abstraction) are inherently highly detailed,
highly restrictive and overly constraining. PLs require too
many design decisions to be made too early just to write a

segment of code (or even to express code based
abstractions). Since those design decisions often constrain
the remainder of the program broadly, early and subtly, they
often impose many invisible restrictions on the contexts in
which that code will work. For example, thread packages
often provide a framework for user written thread routines
but only allow a single user parameter to be sent to the user’s
thread routine. This requirement permeates broadly beyond
the user’s thread routine and may require broad
modifications. This means the user must add “plumbing”
code (e.g., via global variables or packaged parameters) to
provide the data that is needed by the thread routine. This
kind of restriction is highly problematic for reuse in that the
programmer must have knowledge of the internals of a
reusable component (i.e., “white box” reuse) whereas the
ideal would be that he should need to have no knowledge of
the internals of a component (i.e., “black box” reuse). This is
especially problematic for generation systems that seek to
automatically use or generate such components. Previously,
generating “plumbing” code in such situations has been
beyond the state of the art.

III. THE SOLUTION

To address the problems induced by PL-based
representations, DSLGen™ introduces a new kind of
abstraction, the “Associative Programming Constraint”
(APC). APCs modify computational specifications
somewhat like adjectives and adverbs modify other
grammatical elements in natural language. APCs thereby
imply some properties of the programming structures that
will eventually be expressed in the target computational but
do so without yet explicitly formulating those programming
structures. They defer the generation of PL-based elements
until the full architecture of the target program has been
worked out. For example, an APC might express the nominal
form of a loop implied by some domain operator (e.g., a
convolution operator) or by a domain specific operand (e.g.,
a grayscale image expressed as an array of pixels).
Alternatively, another kind of APC might describe an “early
draft” partitioning of a computation without yet actually
performing that partitioning.

APCs are partial and provisional. They are partial in the
sense that they specify only a singular design feature of a
programming component without fully defining the
structural details of that component or its context. They can
be composed to fill out the full set of design features of that
component.

It is as important to understand what APCs do not say as
what they do say. For example, a loop APC does not provide
sufficient information by itself to write the code for a loop. It

Copyright Software Generators, LLC, 2013

does not specify how that loop is partitioned, or whether that
loop executes within a parallel thread, or whether that loop
executes partly within threads and partly outside of threads,
and so forth. It provides no knowledge of the exact context in
which that loop will be written. Nor does it determine
whether the loop occurs within a function and if so, which
one. These elements remain to be specified by other
elements of the design structures (e.g., other APCs).

Furthermore, APCs are provisional. That is, they may
(and almost certainly will) be changed as the generation
process progresses. They may be combined. They may be
formed into sets. Those sets may be combined. For example,
there is a kind of algebra for APCs that provides the rules of
formulation, transition, combination and reorganization.

More broadly speaking, APCs are composed to form
Logical Architectures (LAs) that modify computational
specifications. Those LAs evolve into forms that will guide
the generation of cloned, specialized versions of the
computation specification that they modify.

Furthermore, the LAs will determine a Design
Framework, (i.e., the global architecture for the PL based
computation) into which cloned and specialized
computational specifications will be installed, where the
specialization will be determined in part by the LAs.

IV. AN EXAMPLE PROBLEM

The initial problem domain treated by DSLGen
TM

 is
digital signal processing (DSP) and includes problems that
range from signal and image processing to neural networks
to pattern recognition along with a rich set of related
problems. The domain specific language used to express the
Implementation Neutral Specification (INS) of a
computation is based on the Image Algebra (IA) [9]. The
INS will never have to be reprogrammed regardless of the
evolution of and changes to the execution platform.

As an example computation, we develop a program that
performs Sobel edge detection on a grayscale image (i.e.,
where the pixels are shades of gray). Such a program would
take, for example, the image “a” in Fig. 1 as input and
produce the image “b” in Fig.2 as output. The output image
has been processed so as to enhance (line) edges of items in
the image by the Sobel edge detection method.

Each black and white pixel b[i,j] in the output image “b”
is computed from an expression involving the sum of
products of pixels in a neighborhood (e.g., defined by “sp”,
of type iatemplate) surrounding the a[i,j] pixel and the
coefficients defined by that neighborhood (e.g., sp). This is
called a convolution of a matrix with a template (or
neighborhood). In the IA, a convolution is designated by the

⊕ operator, e.g., (a ⊕ sp). In the following examples, s and
sp will designate instances of the class iatemplate.
Mathematically, the Sobel computation is defined as

{Foralli,j (bi,j : bi,j = sqrt((∑p, q (w(s)p , q * a i+p , j+q)

2
 +

 ∑p, q (w(sp)p , q * a i+p , j+q)
2
)} (1)

where i and j are indexes that range over the matrices a and
b; p and q are indexes that range over the iatemplate
neighborhoods s and sp; and the coefficients of each

neighborhood (which are also called weights) are defined by
the function “w”. For Sobel edge detection, the weights are
all defined to be 0 if the center pixel of the neighborhood
corresponds to an edge pixel in the image (i.e., w(s) = 0 and
w(sp) = 0), and if not an edge pixel, they are defined by the s
and sp neighborhoods shown in (2). It is convenient to index
the neighborhoods in the DSL from -1 to +1 for both
dimensions so that the current pixel being processed is at
(0, 0) of the neighborhood.

48476
Q

101

121

000

121

1

0

1

P)(

−

 −−−

−

=sw

48476
Q

101

101

202

101

1

0

1

P)(

−

−

−

−

−

=spw

(2)

Since an implementation of this computation for a

parallel computer may not be organized like the
mathematical formula, it is useful to represent this
specification more abstractly because such abstractions can
defer the implementation and organization decisions and
thereby allow the computation (i.e., “what” is to be
computed) to be specified completely separately and
somewhat independently from the implementation form (i.e.,
“how” it is to be computed). Thus, the abstract computation
specification (i.e., the INS) is independent of the architecture
of the machine that will eventually be chosen to run the code.
Choosing a different machine architecture for the
implementation form without making any changes to the
specification of the computation (i.e., to the “what”), will
automatically generate a different implementation form that
is tailored to the new machine’s architecture. More to the
point, porting from one kind of machine architecture (e.g.,
machines with instruction level parallelism like Intel’s SSE
instructions) to a different kind of machine architecture (e.g.,
machines with large grain parallelism such as multi-core
CPUs) can be done automatically by only making trivial
changes to the machine specifications and no changes to the
computation specification (i.e., to the “what”). The
publication form in [9] for the Sobel Edge detection
mathematical formula (1) is based on the Image Algebra
domain specific language (DSL). Re-expressing the formula
(1) in the Image Algebra gives a first cut at the INS for the
Sobel example:

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
 (3a)

 Of course, the INS will need some declarations for a, b,

s, sp, etc.:

(DSDeclare IATemplate s :form (array (-1 1) (-1 1))
:of DSNumber)

(DSDeclare IATemplate sp :form (array (-1 1) (-1 1))
:of DSNumber)

(DSDeclare DSNumber m :facts ((> m 1)))
(DSDeclare DSNumber n :facts ((> n 1)))
(DSDeclare BWImage a :form (array m n) :of BWPixel)
(DSDeclare BWImage b :form (array m n) :of BWPixel)

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
 (3b)

Copyright Software Generators, LLC, 2013

m and n are assumed to be user defined elsewhere. The

DSL type declarations (e.g., IATemplate, BWImage, etc.)
define CLOS types that will eventually refine to C types. The
“:facts” keyword denotes a conjunction (i.e., list) of facts
pertinent to the declared item (e.g., m) and will be used to
infer, for example, that“(i==(m-1))” is false when “(i==0)” is

true. Beyond (3b), we will also need some definitions for ⊕
and for s and sp, which must be equivalent to (2). All of
these definitions will be provided later.

The IA DSL is the basis of the Implementation Neutral
Specification (INS) in the examples used throughout the
remainder of this document. A full description of the IA used
by DSLGen

TM
 is beyond the scope of this paper (see [9]) but

a few comments are in order. The IA is much like APL in the
sense that IA specifications eschew the use of explicit
looping constructs allowing loops to be implied by IA
operators and data structures. The generator will introduce
implied loops as constraints and, through the manipulation,
combination and propagation of these constraints, will
determine the relationships between IA expressions and
loops. The initial form of the LA arises during this process.

In DSLGen

TM
, the Image Algebra is adapted to a more

utilitarian, LISP based syntax with prefix operators, without

the pretty symbols (e.g., the convolution operator ⊕ becomes
a Lisp symbol), and with the w functions in (1) becoming so-
called Method-Transforms (MT), which rewrite Abstract
Syntax Tree (AST) subtrees. MTs look superficially a bit like
object oriented methods with a pattern (i.e., the MT’s left
hand side or lhs) as the analog of a method’s parameter
sequence and a pure functional expression right hand side
(rhs) as the analog of a method’s body. MTs will be an
important component of the intermediate language (IL) by
which provisional but malleable definitions are expressed.
For example, w of the neighborhood s is an MT expressed
as:

(Defcomponent w (sp #. ArrayReference ?p ?q)
 (if (or (== ?i ?ilow) (== ?j ?jlow)
 (== ?i ?ihigh) (== ?j ?jhigh)
 (tags (constraints partitionmatrixtest edge)))

 (then 0)
 (else (if (and (!= ?p 0) (!= ?q 0))
 (then ?q)
 (else (if (and (== ?p 0) (!= ?q 0))
 (then (* 2 ?q))
 (else 0))))))) (4)

where ArrayReference is the name of a shared pattern that
will recognize an array reference in an AST (e.g., a[i,j]) and
bind the loop index variables (e.g., i and j) to the pattern
variables ?i and ?j, the matrix name a to ?a and the
expressions defining the upper and lower ranges of those
loop indexes to ?ihigh, ?ilow, etc. The remainder of the lhs
pattern after ArrayReference will bind ?p and ?q to the loop
index names used by the inner convolution loops over the
neighborhood designated by sp. The w definition of
neighborhood s follows a similar pattern.

The “tags” expression designates a property list for the
OR conditional expression, which in (4) provides the user
supplied domain knowledge that the OR expression is a
partitioning condition for this computation that will identify
edge partitions and by implication, a non-edge (i.e., center)
partition. Because such partitions are specific to particular
computation specifications, they are designated by the
moniker “natural” partitions. Later this notion will be
extended to add a new kind of partition, the “synthetic
partition,” which will provide a mechanism for incorporating
implementation requirements into the LA.

Problem domain concepts like “edge” and “center” play a
key role in the logical architecture for the target computation
and beyond that, in imposing design pattern frameworks onto
a logical architecture. Heuristic rules based on domain
concepts are the mechanisms whereby DSLGen

TM
 chooses a

design pattern framework to introduce PL structures and
clichés (e.g., coordinated routines, synchronization patterns
and thread management clichés). It then maps the LA into
the structures and clichés of that design pattern framework.

The opportunity for such domain specific heuristic rules

is open ended, especially given the rich variety of possible
semantic subclasses of partitions. Different problem

Figure 1. Input Image a

Figure 2. Output Image b

Copyright Software Generators, LLC, 2013

examples may introduce other domain semantics. For
example, in the matrix domain, the semantic subclasses
include corners (e.g., corners are special cases in the
partitioning of image averaging computations); non-corner
edges also used in image averaging; upper and lower
triangular matrices, which are used in various matrix
algorithms; diagonal matrices; and so forth. By contrast, in
the data structure domain, domain subclasses include trees,
left and right subtrees, red and black nodes, etc. In general,
domain concepts drive the DSLGen

TM
 program generation

process.

V. OVERVIEW OF THE GENERATION PROCESS

….

b = [(a s)2 +
(a sp)2]1/2

((PL C) (partition t)
Mcore
(Threads MS)
(LoadLevel

(SliceSize 5)))

Logical

Architecture

Synthetic

Architecture

Clone &

Specialize

Design

Framework

Target

Program

Figure 3. Generation Process

It is beyond the limitations of this paper to describe in

detail how DSLGen™ generates a target program but we can
sketch out the process at a high level of abstraction. Figure 3
is an overview of the process. The target machine is
specified by the high level descriptor expression “((PL C)
(partition t) (threads MS) (LoadLevel (sliceSize 5)))”. This
specifies “C” as the output language. It asks for partitioning
of the computation, which will make use of the property list
“(tags (constraints partitionmatrixtest edge))” from
expression (4) to accomplish the partitioning. The result will
be the partition set {edge1, edge2, edge3, edge4, center5}
from the S neighborhood and partition set {edge6, edge7,
edge8, edge9, center10} from the SP neighborhood. In the
end, these two partition sets will be combined into the set
{edge11, edge12, edge13, edge14, center15} where edge11
is the combination of edge1 and edg6 with the others (i.e.,
edge12 through center15) following a similar pattern.

Newly specialized neighborhoods will be created for
each partition (e.g., s-edge11 and sp-edge11). Importantly,
the definitions of w(s-<partition-M>) and w(sp-<partition-
M>) will be specialized for each <partition-M> by assuming
the partitioning condition of that partition is true (e.g.,” (==
?i ?ilow)” is true) and partially evaluating the body of the
definition. For example, the body of w(s-edge-M) and w(sp-
edge-M) definitions (for all M’s) will partially evaluate to 0.
The neighborhood center partitions will reduce the body of
expression 4 to the expression representing the false branch
of the partitioning expression. When finally inlined into the
generated code, the edge partitions will collapse into single

loops processing an edge and setting the pixel value to 0 (i.e.,
white). The logic generated for center partitions will mimic
the structure of the else branch of expression (4) and
analogously for the s neighborhood.

In the Synthetic Architecture phase, the synthetic
architecture (which derives from the LA) can evolve in many
possible directions based on the value of remainder of the
execution platform specification. For example, a vector
machine description would produce expressions made up of
vector instructions (e.g., Intel SSE instructions).
Alternatively, the lack of any machine specific designations
would produce a simple Von Neumann program. Finally, for
the example given, “(threads MS) (LoadLevel (sliceSize
5)),” the synthetic architecture will introduce new loops (e.g.,
one to slice the center partition into slices and a second loop
to process a slice). It will also introduce a new “synthetic”
partition to represent the center with slices and another new
synthetic partition to represent one of the slices from the set
of slices.

Synthetic partitions extend the “natural” partition concept
by adding design feature requirements that will engender
architectural variations beyond simple partitioning. For
example, our example platform specification requires
separation of the nominal loop over the image into two parts:
one that determines the start and end indexes of each slice
and a second one that processes a single slice. The
requirement “(threads MS)” will trigger a search for a
Design Framework (DF) that handles slicer/slicee synthetic
architectures (i.e., like the one generated by this example)
with the additional requirement that the DF introduces thread
based parallelism in the overall computation. A DF is a
formalization of the “Design Patterns” concept from the
gang of four book of the same name [7]. DF’s comprise
patterns from that book as well as the book “Patterns for
Parallel Programming” [8].

To prepare the partially translated INS specification for
insertion into a DF that will establish the architectural
scaffolding (among other services) for the target
implementation structure, the generator must clone the INS
and specialize it to the partitions that are specific to the
“holes” in the DF. Expressions (5) and (6) respectively
illustrate specializations for an example edge and the center

slice. Eventual inlining of the definitions for ⊕⊕⊕⊕ and the
specialized Method-Transforms such as w(s-<partition-M>)
along with partial evaluation will do the lion’s share of the
work in formulating the final code. There are other facilities
that handle other specialization processes but they are
beyond the scope of this paper. The broad sense of the

processing is sufficiently provided by this level of detail.

b [i,j]=[(a[i,j] ⊕⊕⊕⊕ S-Edge2[p,q])
2
+

 (a[i,j] ⊕⊕⊕⊕ sp-Edge2[p,q])
2
]

1/2
 (5)

b [i,j]=

 [(a[i,j] ⊕⊕⊕⊕ S-Center5-ASeg[p,q])
2
 +

 (a[i,j] ⊕⊕⊕⊕ sp-Center5-ASeg[p,q])
2
]

1/2
 (6)

Copyright Software Generators, LLC, 2013

The DF is a skeletal structure that mixes fairly low level

code (e.g., for thread management and synchronization) with
“holes” that are subject to a few simple, general restrictions.
For example, one of the holes is designed to sequentially
batch process lightweight threads (i.e., threads that may cost
as much time to set up as they might save by being run in
parallel). Here is where domain knowledge based heuristics
come into play. One of the domain characteristics of edge
partitions is that they tend to be lightweight computations.
Thus, the generator makes the decision to relegate the code
specific to the edge partitions to this hole based on heuristic
knowledge.

Figure 4 illustrates the essence of the code that is

generated for the chosen example (with some cosmetic
positional editing for presentation and some added comments
for improved understandability).

/* THREAD MANAGEMENT ROUTINE*/

void SobelThreads8 ()

{ HANDLE threadPtrs[200];
 HANDLE handle;
 /* Launch the thread for lightweight processes. */
 handle = (HANDLE)_beginthread(& SobelEdges9,

 0, (void*) 0);
 DuplicateHandle(GetCurrentProcess(),handle,
 GetCurrentProcess(),&threadPtrs[0],

0,FALSE,
DUPLICATE_SAME_ACCESS);

 /* Launch the threads for the slices of heavyweight
 processes. */
for (int h=0; h<=(m-1);h=h+5)
 {handle=(HANDLE)
 _beginthread(&SobelCenterSlice10,0,(void*) h);
 DuplicateHandle(GetCurrentProcess(), handle,
 GetCurrentProcess(),&threadPtrs[tc],
 0, FALSE, DUPLICATE_SAME_ACCESS);
 tc++; }
long result = WaitForMultipleObjects(tc, threadPtrs, true,
 INFINITE); }

/* BATCHED PROCESSING OF EDGES*/

void SobelEdges9()
 { /* Edge1 partitioning condition is (i=0) */
 {for (int j=0; j<=(n-1);++j) b [0,j]=0;}
 /* Edge2 partitioning condition is (j=0) */
 {for (int i=0; i<=(m-1);++i) b [i,0]= 0;}
 /* Edge3 partitioning condition is (i=(m-1)) */
 {for (int j=0; j<=(n-1);++j) b [(m-1),j]=0;}
 /* Edge4 partitioning condition is (j=(n-1)) */
 {for (int i=0; i<=(m-1);++i) b [i, (n-1)]= 0;}
 _endthread(); }

/*THREAD ROUTINE FOR A CENTER SLICE*/

void SobelCenterSlice10 (int h)
{long ANS45; long ANS46;
 /* Center5-KSegs partitioning condition is
 (and (not (i=0)) (not (j=0)) (not (i=(m-1)))
 (not (j=(n-1)))) */
 /* Center5-ASeg partitioning condition is
 (and (not (i=0)) (not (j=0)) (not (i=(m-1)))
 (not (j=(n-1))) (h<=i) (i<=(min (h+4) (m-1)))*/
 for (int i=h; i<=(min (h+4) (m-1)); ++i) {
 for (int j=1; j<=(n-2); ++j) {
 ANS45 = 0;
 ANS46 = 0;
 for (int p=0; p<=2; ++p) {
 for (int q=0; q<=2; ++q) {
 ANS45 +=
 (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))*
 ((((p - 1) != 0) && ((q - 1) != 0)) ? (p - 1):
 ((((p - 1) != 0) && ((q - 1) == 0)) ?
 (2 * (p - 1)): 0)));
 ANS46 +=
 (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))*
 ((((p - 1) != 0) && ((q - 1) != 0)) ? (q - 1):
 ((((p - 1) == 0) && ((q - 1) != 0)) ?
 (2 * (q - 1)): 0))); }}
 int i1 = ISQRT ((pow ((ANS46), 2) +
 pow ((ANS45), 2)));
 i1 = (i1 < 0) ? 0 : ((i1 > 0xFFFF) ? 0xFFFF : i1);
 ((*((*(A + (i))) + j))) = (BWPIXEL) i1; }}
 _endthread(); }

Figure 4. Multicore Code

The ANS45 and ANS46 expressions mimic the structures

in the definitions of W(sp …) shown as expression (4) and of
W(s …), whose definition is not shown. By contrast, Figure
5 shows a segment of code that also computes a pixel of the
center partition but for the case where the platform
specification requests Instruction Level Processing (i.e.,
vector instructions) using Intel’s SSE instruction set. This
example is a color image with RGB (Red-Green-Blue) color
planes and Figure 5 shows the computation of only one color
plane.

/*EDGE COMPUTATIONS PRECEED THIS SEGMENT*/

int IDX4 = 0; int IDX3 = 0;
int DSARRAY9 [3] [3] = {{-1,-2,-1},{0,0,0},{1,2,1}};
int DSARRAY10 [3] [3] = {{-1,0,1},{-2,0,2},{-1,0,1}};
for (IDX3=1; IDX3<=98; ++IDX3)
 {{for (IDX4=1; IDX4<=98; ++IDX4)

{{/* Cloned loop specialized for design object
 (SPPART-0-CENTER10 SPART-0-CENTER5).*/
 /*Cloned loop specialized for partitioning conditions:

 (!= IDX4 99) (!= IDX3 99) (!= IDX4 0) (!= IDX3 0)*/
 {{(ANSCOLORPIXEL4.RED1) =
 UNPACKADD (

Copyright Software Generators, LLC, 2013

 PADD (2,
 PADD (2,
 PMADD (3,(& ((*((*(C + ((IDX3 - 1)*100)))
 + (IDX4 - 1))).RED1)),
 (& (*((*(DSARRAY9 + (0*3))) + 0)))),
 PMADD (3,(& ((*((*(C + (IDX3*100)))
 + (IDX4 - 1))).RED1)),
 (& (*((*(DSARRAY9 + (1*3))) + 0))))),
 PMADD (3,(& ((*((*(C + ((IDX3 + 1)*100)))
 + (IDX4 - 1))).RED1)),
 (& (*((*(DSARRAY9 + (2*3))) + 0))))));
 (ANSCOLORPIXEL2.RED1) =
 UNPACKADD (
 PADD (2,
 PADD (2,
 PMADD (3,(& ((*((*(C + ((IDX3 - 1)*100)))
 + (IDX4 - 1))).RED1)),
 (& (*((*(DSARRAY10 + (0*3))) + 0)))),
 PMADD (3,(& ((*((*(C + (IDX3*100)))
 + (IDX4 - 1))).RED1)),
 (& (*((*(DSARRAY10 + (1*3))) + 0))))),
 PMADD (3,(& ((*((*(C + ((IDX3 + 1)*100)))
 + (IDX4 - 1))).RED1)),
 (& (*((*(DSARRAY10 + (2*3))) + 0)))))); }
 ((*((*(D + (IDX3*100))) + IDX4)).RED1) =
 ISQRT ((pow ((ANSCOLORPIXEL2.RED1),2)
 + pow ((ANSCOLORPIXEL4.RED1),2)));

/* … REMAINING COLOR PLANES COMPUTED
 HERE */

Figure 5. SSE Instruction Set Code

The key point of Fig. 5 is that the organization of the

code is radically different from Fig. 4. Notice that the
generated arrays DSARRAY9 and DSARRAY10 contain the
constants defined in expression (2). The generator
constructed these array definitions by partially evaluating the
definitions of w(sp ….) and w(s…) for all indexes in the
neighborhoods sp and s. The PMADD functions are C
macros that set up the SSE instruction PMADD, which will
do a product multiply and add of one row of the weights in
the generated arrays and the corresponding vector of pixel
values in one color plane of the image C. The PADD macros
invoke PADD instructions to add the row results together
and UNPACKADD unpacks the results from the SSE
register. Each of the generated answer variables
ANSCOLORPIXEL2.RED1 and
ANSCOLORPIXEL4.RED1 contains the partial results from
one of the two separate convolution operations in expression
(3a).

The overall conclusion from this work is that the new
representational abstractions lead to significant amplification
of the underlying reusable componentry.

VI. RELATED RESEARCH

A full consideration of related and previous research is
beyond the scope of this paper. However, some broad
differences between this work and all previous research stand
out and illustrate the novelty of this work. Most generally,
this generator eschews the programming language domain
and representation during the early generation process. This
leads to significant advantages such as the ability to work
with logical architecture abstractions (e.g., APCs) and evolve
the shape of the desired overall architecture before casting
the computation into a programming language form. During
this early “design” process, many lower level details can be
ignored or elided thereby vastly simplifying the evolution of
the architecture.

Because the computation is specified in an
implementation neutral form, reprogramming is avoided.
Only the specification of the execution platform needs to be
changed when moving to a new execution platform. In
theory, a new generation regime for DSLGen™ can be
added to support any new execution platform regardless of
the architectural structure and the code generated for that
platform will exploit its unique features. Additionally, new
application domains can be added by similar techniques.

References

[1] Ted J. Biggerstaff, “A perspective of generative reuse, annals of
software engineering,” Baltzer Science Publishers, AE Bussum, The
Netherlands, 1998, pp.169-226.

[2] Ted J. Biggerstaff, “Fixing some transformation problems”
Automated Software Engineering Conference, Cocoa Beach, Florida,
1999, pp. 10.

[3] Ted J. Biggerstaff, “A new architecture of transformation-based
generators,” IEEE Transactions on Software Engineering, Vol. 30,
No. 12, Dec., 2004, 1036-1054.

[4] Ted J. Biggerstaff, “Automated partitioning of a computation for
parallel or other high capability architecture,” Patent no. 8,060,857,
United States Patent and Trademark Office, filed January 31, 2009,
issued November 15, 2011.

[5] Ted J. Biggerstaff, “Non-localized constraints for automated program
generation,” United States Patent and Trademark Office, Patent no.
8,225,277, filed April 25, 2010, issued July 17, 2012.

[6] Ted J. Biggerstaff, “Synthetic partitioning for imposing
implementation design patterns onto logical architectures of
computations,” United States Patent and Trademark Office, Patent no.
8,327,321, filed August 27, 2011, issued Dec. 4, 2012.

[7] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design
Patterns, Addison-Wesley, 1995.

[8] Timothy G. Mattson, Beverly A. Sanders and Berna L. Massingill,
Patterns for Parallel Programming, Addison Wesley, 2008.

[9] Gerhard X. Ritter and Joseph N. Wilson, The Handbook of Computer
Vision Algorithms in Image Algebra, CRC Press, 1996.

