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Abstract—This paper introduces the DSLGenTM (Domain 

Specific Language Generator), an execution platform 

independent program generation system that produces 

optimized code (without reprogramming) for multiple 

execution platform architectures. The target computation is 

specified in a programming language independent, 

Implementation Neutral Specification (INS) form and need not 

ever be changed unless the target computation changes. The 

target execution platform architecture is specified separately in 

terms of high level domain specific descriptors. Only the 

platform specification needs to change when moving to a new 

platform. Key to this solution is the introduction of new 

representational abstractions for the early stages of generation. 

The overall conclusion from this research is that the new 

representational abstractions significantly amplify the 

reusability of the underlying componentry. 
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I.  INTRODUCTION 

A long standing problem in reuse has been amplifying 
the reusability of components so that a small set of 
components can be composed to form many programs. In 
many cases, two components that conceptually should be 
compatible are often not for relatively trivial reasons. For 
example, composing two components that perform two 
sequential transformations on data may execute too slowly 
because of underlying computational redundancies or 
because sequential operations have been imposed on the 
operations where some degree of parallelism would make 
them sufficiently fast.  

Many techniques have been tried to solve this problem 
with varying degrees of success but none can be said to 
really solve the amplification problem in any general or 
sufficient sense. 

II. THE UNDERLYING PROBLEM 

After struggling with this problem for a long time, I have 
concluded that the key difficulty lies in the representation 
used to express reusable components. Virtually all 
component representations are either based on programming 
languages (PLs) or based on abstractions thereof. This, I 
believe, is the underlying problem. PL representations (at 
any level of abstraction) are inherently highly detailed, 
highly restrictive and overly constraining. PLs require too 
many design decisions to be made too early just to write a 

segment of code (or even to express code based 
abstractions). Since those design decisions often constrain 
the remainder of the program broadly, early and subtly, they 
often impose many invisible restrictions on the contexts in 
which that code will work. For example, thread packages 
often provide a framework for user written thread routines 
but only allow a single user parameter to be sent to the user’s 
thread routine. This requirement permeates broadly beyond 
the user’s thread routine and may require broad 
modifications. This means the user must add “plumbing” 
code (e.g., via global variables or packaged parameters) to 
provide the data that is needed by the thread routine. This 
kind of restriction is highly problematic for reuse in that the 
programmer must have knowledge of the internals of a 
reusable component (i.e., “white box” reuse) whereas the 
ideal would be that he should need to have no knowledge of 
the internals of a component (i.e., “black box” reuse). This is 
especially problematic for generation systems that seek to 
automatically use or generate such components. Previously, 
generating “plumbing” code in such situations has been 
beyond the state of the art. 

III. THE SOLUTION 

To address the problems induced by PL-based 
representations, DSLGen™ introduces a new kind of 
abstraction, the “Associative Programming Constraint” 
(APC). APCs modify computational specifications 
somewhat like adjectives and adverbs modify other 
grammatical elements in natural language. APCs thereby 
imply some properties of the programming structures that 
will eventually be expressed in the target computational but 
do so without yet explicitly formulating those programming 
structures. They defer the generation of PL-based elements 
until the full architecture of the target program has been 
worked out. For example, an APC might express the nominal 
form of a loop implied by some domain operator (e.g., a 
convolution operator) or by a domain specific operand (e.g., 
a grayscale image expressed as an array of pixels). 
Alternatively, another kind of APC might describe an “early 
draft” partitioning of a computation without yet actually 
performing that partitioning.  

APCs are partial and provisional. They are partial in the 
sense that they specify only a singular design feature of a 
programming component without fully defining the 
structural details of that component or its context. They can 
be composed to fill out the full set of design features of that 
component.  

It is as important to understand what APCs do not say as 
what they do say. For example, a loop APC does not provide 
sufficient information by itself to write the code for a loop. It 
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does not specify how that loop is partitioned, or whether that 
loop executes within a parallel thread, or whether that loop 
executes partly within threads and partly outside of threads, 
and so forth. It provides no knowledge of the exact context in 
which that loop will be written. Nor does it determine 
whether the loop occurs within a function and if so, which 
one. These elements remain to be specified by other 
elements of the design structures (e.g., other APCs). 

Furthermore, APCs are provisional. That is, they may 
(and almost certainly will) be changed as the generation 
process progresses. They may be combined. They may be 
formed into sets. Those sets may be combined. For example, 
there is a kind of algebra for APCs that provides the rules of 
formulation, transition, combination and reorganization.  

More broadly speaking, APCs are composed to form 
Logical Architectures (LAs) that modify computational 
specifications. Those LAs evolve into forms that will guide 
the generation of cloned, specialized versions of the 
computation specification that they modify.  

Furthermore, the LAs will determine a Design 
Framework, (i.e., the global architecture for the PL based 
computation) into which cloned and specialized 
computational specifications will be installed, where the 
specialization will be determined in part by the LAs. 

IV. AN EXAMPLE PROBLEM 

The initial problem domain treated by DSLGen
TM

 is 
digital signal processing (DSP) and includes problems that 
range from signal and image processing to neural networks 
to pattern recognition along with a rich set of related 
problems. The domain specific language used to express the 
Implementation Neutral Specification (INS) of a 
computation is based on the Image Algebra (IA) [9].  The 
INS will never have to be reprogrammed regardless of the 
evolution of and changes to the execution platform. 

As an example computation, we develop a program that 
performs Sobel edge detection on a grayscale image (i.e., 
where the pixels are shades of gray). Such a program would 
take, for example, the image “a” in Fig. 1 as input and 
produce the image “b” in Fig.2 as output. The output image 
has been processed so as to enhance (line) edges of items in 
the image by the Sobel edge detection method. 

Each black and white pixel b[i,j] in the output image “b” 
is computed from an expression involving the sum of 
products of pixels in a neighborhood (e.g., defined by “sp”, 
of type iatemplate) surrounding the a[i,j] pixel and the 
coefficients defined by that neighborhood (e.g., sp). This is 
called a convolution of a matrix with a template (or 
neighborhood). In the IA, a convolution is designated by the 

⊕ operator, e.g., (a ⊕ sp). In the following examples, s and 
sp will designate instances of the class iatemplate. 
Mathematically, the Sobel computation is defined as 

 
{Foralli,j (bi,j : bi,j =  sqrt((∑p, q (w(s)p , q * a i+p , j+q)

2
 + 

                   ∑p, q (w(sp)p , q * a i+p , j+q)
2
)}   (1) 

 
where i and j are indexes that range over the matrices a and 
b; p and q are indexes that range over the iatemplate 
neighborhoods s and sp;  and the coefficients of each 

neighborhood (which are also called weights)  are defined by 
the function “w”. For Sobel edge detection, the weights are 
all defined to be 0 if the center pixel of the neighborhood 
corresponds to an edge pixel in the image (i.e., w(s) = 0 and 
w(sp) = 0), and if not an edge pixel, they are defined by the s 
and sp neighborhoods shown in (2).  It is convenient to index 
the neighborhoods in the DSL from -1 to +1 for both 
dimensions so that the current pixel being processed is at   
(0, 0) of the neighborhood. 
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Since an implementation of this computation for a 

parallel computer may not be organized like the 
mathematical formula, it is useful to represent this 
specification more abstractly because such abstractions can 
defer the implementation and organization decisions and 
thereby allow the computation (i.e., “what” is to be 
computed) to be specified completely separately and 
somewhat independently from the implementation form (i.e., 
“how” it is to be computed). Thus, the abstract computation 
specification (i.e., the INS) is independent of the architecture 
of the machine that will eventually be chosen to run the code. 
Choosing a different machine architecture for the 
implementation form without making any changes to the 
specification of the computation (i.e., to the “what”), will 
automatically generate a different implementation form that 
is tailored to the new machine’s architecture. More to the 
point, porting from one kind of machine architecture (e.g., 
machines with instruction level parallelism like Intel’s SSE 
instructions) to a different kind of machine architecture (e.g., 
machines with large grain parallelism such as multi-core 
CPUs) can be done automatically by only making trivial 
changes to the machine specifications and no changes to the 
computation specification (i.e., to the “what”). The 
publication form in [9] for the Sobel Edge detection 
mathematical formula (1) is based on the Image Algebra 
domain specific language (DSL). Re-expressing the formula 
(1) in the Image Algebra gives a first cut at the INS for the 
Sobel example: 
 

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
                                   (3a) 

 
   Of course, the INS will need some declarations for a, b, 

s, sp, etc.: 
 

(DSDeclare IATemplate s :form (array (-1 1) (-1 1))  
:of DSNumber) 

(DSDeclare IATemplate sp :form (array (-1 1) (-1 1))  
:of DSNumber) 

(DSDeclare DSNumber m :facts ((> m 1))) 
(DSDeclare DSNumber n :facts ((> n 1))) 
(DSDeclare BWImage a :form (array m n) :of BWPixel) 
(DSDeclare BWImage b :form (array m n) :of BWPixel)  

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
                                            (3b) 
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m and n are assumed to be user defined elsewhere. The 

DSL type declarations (e.g., IATemplate, BWImage, etc.) 
define CLOS types that will eventually refine to C types. The 
“:facts” keyword denotes a conjunction (i.e., list) of facts 
pertinent to the declared item (e.g., m) and will be used to 
infer, for example, that“(i==(m-1))” is false when “(i==0)” is 

true. Beyond (3b), we will also need some definitions for ⊕ 
and for s and sp, which must be equivalent to (2). All of 
these definitions will be provided later. 

The IA DSL is the basis of the Implementation Neutral 
Specification (INS) in the examples used throughout the 
remainder of this document. A full description of the IA used 
by DSLGen

TM
 is beyond the scope of this paper (see [9]) but 

a few comments are in order. The IA is much like APL in the 
sense that IA specifications eschew the use of explicit 
looping constructs allowing loops to be implied by IA 
operators and data structures. The generator will introduce 
implied loops as constraints and, through the manipulation, 
combination and propagation of these constraints, will 
determine the relationships between IA expressions and 
loops. The initial form of the LA arises during this process. 

 

 
 
 
 
In DSLGen

TM
, the Image Algebra is adapted to a more 

utilitarian, LISP based syntax with prefix operators, without 

the pretty symbols (e.g., the convolution operator ⊕ becomes 
a Lisp symbol), and with the w functions in (1) becoming so-
called Method-Transforms (MT), which rewrite Abstract 
Syntax Tree (AST) subtrees. MTs look superficially a bit like 
object oriented methods with a pattern (i.e., the MT’s left 
hand side or lhs) as the analog of a method’s parameter 
sequence and a pure functional expression right hand side 
(rhs) as the analog of a method’s body. MTs will be an 
important component of the intermediate language (IL) by 
which provisional but malleable definitions are expressed. 
For example, w of the neighborhood s is an MT expressed 
as: 

(Defcomponent w (sp  #. ArrayReference ?p ?q) 
   (if (or (== ?i  ?ilow) (== ?j  ?jlow)  
             (== ?i ?ihigh) (== ?j ?jhigh)  
       (tags (constraints partitionmatrixtest edge))) 

        (then 0)                                         
        (else (if (and (!= ?p 0) (!= ?q 0))   
                     (then ?q) 
                     (else (if (and (== ?p 0) (!= ?q 0))  
                                  (then (* 2 ?q)) 
                                  (else 0)))))))                     (4) 
 

where ArrayReference is the name of a shared pattern that 
will recognize an array reference in an AST (e.g., a[i,j]) and 
bind the loop index variables (e.g., i and j) to the pattern 
variables ?i and ?j, the matrix name a to ?a and the 
expressions defining the upper and lower ranges of those 
loop indexes to ?ihigh, ?ilow, etc. The remainder of the lhs 
pattern after ArrayReference will bind ?p and ?q to the loop 
index names used by the inner convolution loops over the 
neighborhood designated by sp. The w definition of 
neighborhood s follows a similar pattern. 

The “tags” expression designates a property list for the 
OR conditional expression, which in (4) provides the user 
supplied domain knowledge that the OR expression is a 
partitioning condition for this computation that will identify 
edge partitions and by implication, a non-edge (i.e., center) 
partition. Because such partitions are specific to particular 
computation specifications, they are designated by the 
moniker “natural” partitions. Later this notion will be 
extended to add a new kind of partition, the “synthetic 
partition,” which will provide a mechanism for incorporating 
implementation requirements into the LA.  

Problem domain concepts like “edge” and “center” play a 
key role in the logical architecture for the target computation 
and beyond that, in imposing design pattern frameworks onto 
a logical architecture. Heuristic rules based on domain 
concepts are the mechanisms whereby DSLGen

TM
 chooses a 

design pattern framework to introduce PL structures and 
clichés (e.g., coordinated routines, synchronization patterns 
and thread management clichés). It then maps the LA into 
the structures and clichés of that design pattern framework.  

 
 

  
 
 
     
The opportunity for such domain specific heuristic rules 

is open ended, especially given the rich variety of possible 
semantic subclasses of partitions. Different problem 

Figure 1. Input Image a 

Figure 2. Output Image b 
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examples may introduce other domain semantics. For 
example, in the matrix domain, the semantic subclasses 
include corners (e.g., corners are special cases in the 
partitioning of image averaging computations); non-corner 
edges also used in image averaging; upper and lower 
triangular matrices, which are used in various matrix 
algorithms; diagonal matrices; and so forth. By contrast, in 
the data structure domain, domain subclasses include trees, 
left and right subtrees, red and black nodes, etc. In general, 
domain concepts drive the DSLGen

TM
 program generation 

process. 

V. OVERVIEW OF THE GENERATION PROCESS 

….

b = [(a s)2 +
(a sp)2]1/2 

((PL C)  (partition t)   
Mcore  
(Threads MS) 
(LoadLevel 

(SliceSize 5)))

Logical

Architecture

Synthetic

Architecture

Clone &

Specialize

Design

Framework

Target

Program

  
Figure 3. Generation Process 

 
It is beyond the limitations of this paper to describe in 

detail how DSLGen™ generates a target program but we can 
sketch out the process at a high level of abstraction. Figure 3 
is an overview of the process. The target machine is 
specified by the high level descriptor expression “((PL C) 
(partition t) (threads MS) (LoadLevel (sliceSize 5)))”. This 
specifies “C” as the output language. It asks for partitioning 
of the computation, which will make use of the property list 
“(tags (constraints partitionmatrixtest edge))” from 
expression (4) to accomplish the partitioning. The result will 
be the partition set {edge1, edge2, edge3, edge4, center5} 
from the S neighborhood and partition set {edge6, edge7, 
edge8, edge9, center10} from the SP neighborhood. In the 
end, these two partition sets will be combined into the set 
{edge11, edge12, edge13, edge14, center15} where edge11 
is the combination of edge1 and edg6 with the others (i.e., 
edge12 through center15) following a similar pattern. 

Newly specialized neighborhoods will be created for 
each partition (e.g., s-edge11 and sp-edge11). Importantly, 
the definitions of w(s-<partition-M>) and w(sp-<partition-
M>) will be specialized for each <partition-M> by assuming 
the partitioning condition of that partition is true (e.g.,” (== 
?i  ?ilow)” is true)  and partially evaluating the body of the 
definition. For example, the body of w(s-edge-M) and w(sp-
edge-M) definitions (for all M’s) will partially evaluate to 0. 
The neighborhood center partitions will reduce the body of 
expression 4 to the expression representing the false branch 
of the partitioning expression. When finally inlined into the 
generated code, the edge partitions will collapse into single 

loops processing an edge and setting the pixel value to 0 (i.e., 
white). The logic generated for center partitions will mimic 
the structure of the else branch of expression (4) and 
analogously for the s neighborhood. 

In the Synthetic Architecture phase, the synthetic 
architecture (which derives from the LA) can evolve in many 
possible directions based on the value of remainder of the 
execution platform specification. For example, a vector 
machine description would produce expressions made up of 
vector instructions (e.g., Intel SSE instructions). 
Alternatively, the lack of any machine specific designations 
would produce a simple Von Neumann program. Finally, for 
the example given, “(threads MS) (LoadLevel (sliceSize 
5)),” the synthetic architecture will introduce new loops (e.g., 
one to slice the center partition into slices and a second loop 
to process a slice). It will also introduce a new “synthetic” 
partition to represent the center with slices and another new 
synthetic partition to represent one of the slices from the set 
of slices.  

Synthetic partitions extend the “natural” partition concept 
by adding design feature requirements that will engender 
architectural variations beyond simple partitioning. For 
example, our example platform specification requires 
separation of the nominal loop over the image into two parts: 
one that determines the start and end indexes of each slice 
and a second one that processes a single slice. The 
requirement “(threads MS)” will trigger a search for a 
Design Framework (DF) that handles slicer/slicee synthetic 
architectures (i.e., like the one generated by this example) 
with the additional requirement that the DF introduces thread 
based parallelism in the overall computation. A DF is a 
formalization of the “Design Patterns” concept from the 
gang of four book of the same name [7]. DF’s comprise 
patterns from that book as well as the book “Patterns for 
Parallel Programming” [8].  

To prepare the partially translated INS specification for 
insertion into a DF that will establish the architectural 
scaffolding (among other services) for the target 
implementation structure, the generator must clone the INS 
and specialize it to the partitions that are specific to the 
“holes” in the DF. Expressions (5) and (6) respectively 
illustrate specializations for an example edge and the center 

slice. Eventual inlining of the definitions for ⊕⊕⊕⊕ and the 
specialized Method-Transforms such as w(s-<partition-M>) 
along with partial evaluation will do the lion’s share of the 
work in formulating the final code. There are other facilities 
that handle other specialization processes but they are 
beyond the scope of this paper. The broad sense of the 

processing is sufficiently provided by this level of detail.   
 

b [i,j]=[(a[i,j]    ⊕⊕⊕⊕ S-Edge2[p,q])
2
+ 

            (a[i,j]    ⊕⊕⊕⊕    sp-Edge2[p,q])
2
]

1/2
    (5) 

 

b [i,j]=  

   [(a[i,j] ⊕⊕⊕⊕ S-Center5-ASeg[p,q])
2
 + 

     (a[i,j] ⊕⊕⊕⊕    sp-Center5-ASeg[p,q])
2
]

1/2
  (6) 
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The DF is a skeletal structure that mixes fairly low level 

code (e.g., for thread management and synchronization) with 
“holes” that are subject to a few simple, general restrictions. 
For example, one of the holes is designed to sequentially 
batch process lightweight threads (i.e., threads that may cost 
as much time to set up as they might save by being run in 
parallel). Here is where domain knowledge based heuristics 
come into play. One of the domain characteristics of edge 
partitions is that they tend to be lightweight computations. 
Thus, the generator makes the decision to relegate the code 
specific to the edge partitions to this hole based on heuristic 
knowledge. 

 
Figure 4 illustrates the essence of the code that is 

generated for the chosen example (with some cosmetic 
positional editing for presentation and some added comments 
for improved understandability). 

 
/* THREAD MANAGEMENT ROUTINE*/ 
 
void  SobelThreads8 (  )  

{ HANDLE threadPtrs[200];  
   HANDLE handle; 
    /* Launch the thread for lightweight processes. */ 
   handle = (HANDLE)_beginthread(& SobelEdges9,  

                     0, (void*) 0);  
  DuplicateHandle(GetCurrentProcess(),handle,  
                               GetCurrentProcess(),&threadPtrs[0],  

0,FALSE, 
DUPLICATE_SAME_ACCESS);  
 

 /* Launch the threads for the slices of heavyweight  
     processes. */ 
for ( int h=0; h<=(m-1);h=h+5)  
      {handle=(HANDLE) 
         _beginthread(&SobelCenterSlice10,0,(void*)  h);  
         DuplicateHandle(GetCurrentProcess(), handle, 
                  GetCurrentProcess(),&threadPtrs[tc],  
           0, FALSE, DUPLICATE_SAME_ACCESS);  
         tc++;  }   
long result = WaitForMultipleObjects(tc, threadPtrs, true,  
                                                              INFINITE);   }  
 
/* BATCHED PROCESSING OF EDGES*/ 
 
void SobelEdges9( )  
        { /* Edge1 partitioning condition is  (i=0) */ 
   {for (int j=0; j<=(n-1);++j) b [0,j]=0;}  
  /* Edge2 partitioning condition is  (j=0) */ 
  {for (int i=0; i<=(m-1);++i) b [i,0]= 0;}  
  /* Edge3 partitioning condition is  (i=(m-1)) */ 
 {for (int j=0; j<=(n-1);++j) b [(m-1),j]=0;}  
  /* Edge4 partitioning condition is  (j=(n-1)) */ 
         {for (int i=0; i<=(m-1);++i) b [i, (n-1)]= 0;}  
   _endthread( ); }                                                
 
 
 

/*THREAD ROUTINE FOR A CENTER SLICE*/ 
 
void SobelCenterSlice10 (int h)  
{long ANS45;  long ANS46;  
 /*  Center5-KSegs partitioning condition is   
      (and (not (i=0))  (not (j=0))  (not (i=(m-1)))  
              (not (j=(n-1)))) */ 
  /*  Center5-ASeg partitioning condition is   
       (and (not (i=0))  (not (j=0))  (not (i=(m-1)))  
                (not (j=(n-1))) (h<=i) (i<=(min (h+4) (m-1)))*/ 
   for (int i=h; i<=(min (h+4) (m-1)); ++i) {  
      for (int j=1; j<=(n-2); ++j) {  
  ANS45 = 0;   
  ANS46 = 0;  
  for (int p=0; p<=2; ++p) {  
    for (int q=0; q<=2; ++q) {  
      ANS45 +=  
        (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))*  
            ((((p - 1) != 0) && ((q -  1) != 0)) ? (p - 1):  
  ((((p - 1) != 0) && ((q -  1) == 0)) ?  
                             (2 * (p - 1)): 0)));  
      ANS46 +=  
 (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))* 
            ((((p - 1) != 0) && ((q -  1) != 0)) ? (q - 1):  
   ((((p - 1) == 0) && ((q -  1) != 0)) ?  
                              (2 * (q -  1)): 0)));   }}  
      int i1 = ISQRT ((pow ((ANS46), 2) +   
                       pow ((ANS45), 2)));  
        i1 = (i1 < 0) ? 0 : ((i1 > 0xFFFF) ? 0xFFFF : i1); 
        ((*((*(A + (i))) + j))) = (BWPIXEL)  i1;   }} 
         _endthread( ); }                              
 
 

Figure 4. Multicore Code 
 
The ANS45 and ANS46 expressions mimic the structures 

in the definitions of W(sp …) shown as expression (4) and of 
W(s …), whose definition is not shown. By contrast, Figure 
5 shows a segment of code that also computes a pixel of the 
center partition but for the case where the platform 
specification requests Instruction Level Processing (i.e., 
vector instructions) using Intel’s SSE instruction set. This 
example is a color image with RGB (Red-Green-Blue) color 
planes and Figure 5 shows the computation of only one color 
plane. 

 
/*EDGE COMPUTATIONS PRECEED THIS SEGMENT*/ 
 
int IDX4   = 0;   int IDX3   = 0; 
int DSARRAY9  [3] [3]  = {{-1,-2,-1},{0,0,0},{1,2,1}}; 
int DSARRAY10  [3] [3]  = {{-1,0,1},{-2,0,2},{-1,0,1}}; 
for (IDX3=1; IDX3<=98; ++IDX3)  
  {{for (IDX4=1; IDX4<=98; ++IDX4)  

{{/* Cloned loop specialized for design object   
     (SPPART-0-CENTER10 SPART-0-CENTER5).*/ 
   /*Cloned loop specialized for partitioning conditions:  

         (!= IDX4 99) (!= IDX3 99) (!= IDX4 0)  (!= IDX3 0)*/ 
    {{(ANSCOLORPIXEL4.RED1) = 
          UNPACKADD ( 
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             PADD (2, 
                PADD (2, 
                  PMADD (3,(& ((*((*(C + ((IDX3 -  1)*100)))  
                                                      + (IDX4 -  1))).RED1)), 
                        (& (*((*(DSARRAY9 + (0*3))) + 0)))), 
                  PMADD (3,(& ((*((*(C + (IDX3*100)))  
                                                      + (IDX4 -  1))).RED1)), 
                        (& (*((*(DSARRAY9 + (1*3))) + 0))))), 
              PMADD (3,(& ((*((*(C + ((IDX3 +  1)*100)))  
                                                  + (IDX4 -  1))).RED1)), 
                   (& (*((*(DSARRAY9 + (2*3))) + 0)))))); 
       (ANSCOLORPIXEL2.RED1) = 
         UNPACKADD ( 
            PADD (2, 
               PADD (2, 
                 PMADD (3,(& ((*((*(C + ((IDX3 -  1)*100)))  
                                                  + (IDX4 -  1))).RED1)), 
                        (& (*((*(DSARRAY10 + (0*3))) + 0)))), 
                 PMADD (3,(& ((*((*(C + (IDX3*100)))  
                                                    + (IDX4 -  1))).RED1)), 
                        (& (*((*(DSARRAY10 + (1*3))) + 0))))), 
             PMADD (3,(& ((*((*(C + ((IDX3 +  1)*100)))  
                                                 + (IDX4 -  1))).RED1)), 
                   (& (*((*(DSARRAY10 + (2*3))) + 0)))))); } 
     ((*((*(D + (IDX3*100))) + IDX4)).RED1) = 
         ISQRT ((pow ((ANSCOLORPIXEL2.RED1),2)  
                    +  pow ((ANSCOLORPIXEL4.RED1),2))); 
 
/* … REMAINING COLOR PLANES COMPUTED 
          HERE */ 
 

Figure 5. SSE Instruction Set Code 
 
The key point of Fig. 5 is that the organization of the 

code is radically different from Fig. 4. Notice that the 
generated arrays DSARRAY9 and DSARRAY10 contain the 
constants defined in expression (2). The generator 
constructed these array definitions by partially evaluating the 
definitions of w(sp ….) and w(s…) for all indexes in the 
neighborhoods sp and s. The PMADD functions are C 
macros that set up the SSE instruction PMADD, which will 
do a product multiply and add of one row of the weights in 
the generated arrays and the corresponding vector of pixel 
values in one color plane of the image C. The PADD macros 
invoke PADD instructions to add the row results together 
and UNPACKADD unpacks the results from the SSE 
register. Each of the generated answer variables 
ANSCOLORPIXEL2.RED1 and 
ANSCOLORPIXEL4.RED1 contains the partial results from 
one of the two separate convolution operations in expression 
(3a). 

The overall conclusion from this work is that the new 
representational abstractions lead to significant amplification 
of the underlying reusable componentry. 

VI. RELATED RESEARCH 

A full consideration of related and previous research is 
beyond the scope of this paper. However, some broad 
differences between this work and all previous research stand 
out and illustrate the novelty of this work. Most generally, 
this generator eschews the programming language domain 
and representation during the early generation process. This 
leads to significant advantages such as the ability to work 
with logical architecture abstractions (e.g., APCs) and evolve 
the shape of the desired overall architecture before casting 
the computation into a programming language form. During 
this early “design” process, many lower level details can be 
ignored or elided thereby vastly simplifying the evolution of 
the architecture. 

Because the computation is specified in an 
implementation neutral form, reprogramming is avoided. 
Only the specification of the execution platform needs to be 
changed when moving to a new execution platform. In 
theory, a new generation regime for DSLGen™ can be 
added to support any new execution platform regardless of 
the architectural structure and the code generated for that 
platform will exploit its unique features. Additionally, new 
application domains can be added by similar techniques.  
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