
Automatically Solving Simultaneous Type Equations for

Type Difference Transformations that Redesign Code
*

Ted J. Biggerstaff

Software Generators, LLC

dslgen at softwaregenerators dot com

Abstract. This paper introduces a generalization of programming data types

called Context Qualified Types (or CQ Types for short). CQ Types are a su-

perset of programming language data types. They incorporate design features

or contexts that fall outside of the programming data type domain (e.g., a

planned program scope). CQ Types are functionally related to other CQ

Types (and eventually to conventional data types) such that a differencing op-

eration defined on two related types will produce a program transformation

that will convert a computational instance (i.e., code) of the first type into a

computational instance of the second type. Large grain abstract relationships

between design contexts may be expressed as simultaneous type equations.

Solving these equations, given some starting code instances, produces trans-

formations that redesign the code from one design context (e.g., a payload

context) to a different design context (e.g., a “hole” within a design frame-

work from a reusable library).

Keywords: Type differencing, context qualified types, CQ Types, design

frameworks, design features, functionally related types, transformations, do-

main driven instantiation, simultaneous type equations.

1 Overview

1.1 The Problem

This paper addresses the problem of automatically integrating two separately de-

rived pieces of code that are potentially compatible but differ in a few design details

that will have to be synchronized to achieve compatibility1. These design differences

arise from slightly differing requirements for the differing specifications. For exam-

ple, consider a code/design framework (i.e., a combination of skeletal code plus holes

* Patent 8,713,515 [7] and patent pending.

1 This work is a part of the DSLGen™ program generation system, the details of which are

beyond the scope of this paper. A more complete discussion of DSLGen™ can be found in

[6], as well as other documentation available at www.softwaregenerators.com.

designed to accept insertion of foreign, target computation code, e.g., Ref.2 1-01) as

one of those pieces of code. Let’s call this framework the “Thread Design Frame-

work” (or TDF for short). The TDF framework example expresses a pattern of paral-

lel computation using threads to implement parallel execution but knows virtually

nothing about the code to be executed within those threads (i.e., the code in the

“framework holes”). Its design might be constrained by the requirements of the thread

package used. For example, a planned user (or generator) written routine for initiating

a thread might only allow one user data parameter to be passed to the application

programmer’s thread routine (along with the thread specific parameters, of course). If

that thread routine needs more than a single item of user data to operate (e.g., matri-

ces, the dimensions of the matrices, and perhaps some start and end indexes specific

to the algorithm), then the programmer (or generator) may have to formulate some

custom “glue” code to connect the target computation data to the holes in TDF. For

example, he could setup global variables to communicate that data to the thread rou-

tine. Alternatively, the programmer could write some “glue” code to package up the

set of needed data into a structure (for example) before calling the thread routine, send

a pointer to the structure to the thread routine as the single user argument and then

unpack the data items within the application’s thread routine. In this latter case, he

will also have to adapt (i.e., redesign) elements of his “vanilla” payload computation

to fit the details of this glue code.

Fig. 1. Skeletal design framework and a code payload

Given those requirements on the thread based code framework (TDF), consider the

nature of the target code payload (e.g., Ref. 1-02) that is to be merged into the TDF.

That target computation payload might benefit from parallel computation but will

require design modifications to execute correctly with the TDF framework (Ref. 1-

2 Ref. will be use to designate callouts in figures. Ref. n-mm will be the mm callout in Fig. n.

01). For example, among the modifications that will have to be made to synchronize it

with the code in the TDF framework is the redesign of the references to its data (e.g.,

the matrices, etc.) so that they synchronize with the design implicit in TDF’s (skele-

tally defined) thread routine (Ref. 1-01). As mentioned earlier, direct reference via

global variables to the matrices and related data (e.g., indexes) is one possible solu-

tion but that may require some scope adaptation to both the payload and the frame-

work to allow sharing of the same scope. However, such changes can be daunting for

an automatic generation system because a generator has to first model the global

scoping structure, which can be challenging. If the framework design cannot be

changed (e.g., it is a reusable library component or it calls unchangeable library rou-

tines), then the design of the payload will have to be altered by writing some glue

code that packages up references to the payload variables and modifies the payload

code to connect through the glue code. The glue code option has the benefit of greater

localization of the changes thereby making them easier for an automated generation

system. This invention provides an automated method for the class of redesign pro-

cess that allows the payload code to be redesigned so that it can be relocated into the

context of a framework (e.g., TDF). For some background on alternative concepts that

are similar to but not exactly the same as design frameworks, see [10, 13].

To create the redesign machinery, this work extends the conventional notion of da-

ta types by incorporating into the type specification, design features and contexts

(e.g., generator-time design features) that fall outside the domain of programming

language data types. Thereby the generator is able to define and work directly with

features and contexts of an evolving design abstraction (i.e., an abstraction not based

on programming language structures or abstractions thereof). The extended types are

called Context Qualified Types or CQ Types. Additionally, the machinery provides a

key mechanism for defining composite CQ Types such that there is an explicit func-

tional relationship between pairs of CQ Types as well as between programming lan-

guage data types (e.g., BWImage) and related CQ types (i.e. a pointer to BWImage).

This explicit functional relationship determines how to automatically generate type

difference transformations that can convert an instance (e.g., “B” as in Ref. 1-06) of

one of the types (e.g., BWImage) into an instance (e.g., “(& B)”) of the other type

(e.g., Pointer to BWImage), where “&” is the “address” operator. Also, any two func-

tionally related CQ Types allow the automatic generation of an inverse transfor-

mation3. The inverse transform will convert an instance of a pointer to a BWImage

(e.g., a structure field named “BP”) into the BWImage itself (e.g., “(* BP)”). BP

might be within a different scope altogether from B (e.g., the “*BP” field in the

3 Many difference transformations are not “pure” functions and may therefore introduce exis-

tential variables. For example, an instance of a 2D matrix being transformed into a reference

to an item in that matrix may introduce one or more programming language index variables

such as ?Idx1 and ?Idx2 whose eventual target program identities (e.g., i and j) may not yet

be determined. The mechanisms for dealing with such existential variables and their bind-

ings are beyond the scope of this paper but suffice it to say, DSLGen deals with these prob-

lems using domain specific knowledge (see the description of the ARPS protocol below) to

stand in for those identities until they can be concretely determined later in the generation

process.

framework scope shown as Ref. 1-05). The automatically generated type difference

transformations as a class are called redesign transformations or redesigners for

short. This machinery will be used to redesign instances of generated code (e.g., an

expression to compute a convolution of an image) so that they can be used to instanti-

ate a partially complete code framework such as TDF (i.e., a pattern of some code and

some receptacles for foreign code). Since the framework may need to use data items

that are decorated with design features (e.g., a field containing a pointer to the data)

that are not a part of the original data item, the original data item will need to be rede-

signed to synchronize with the requirements of the framework before it can be used in

a context of the framework.

A key problem in using code components developed independently in one context

(e.g., payload scope) without knowledge of their potential use in and connections to

elements of a disparate context (e.g., framework scope) is that there is no feasible way

to directly connect the elements of the one context (e.g., a payload context) to the

conceptually corresponding elements of the other context (e.g., a framework context)

without negating the independence of the two contexts and thereby negating the com-

binatorial reuse value of combining many independent contexts. Identifying the corre-

spondences between disparate code components by explicit names is not feasible

because the two contexts are developed independently and likely, at different times.

Parameter connections are not feasible because like explicit naming, this would re-

quire some a priori coordination of the structure of the two disparate code compo-

nents, which is not desirable. What the two contexts may know about each other is

indirect. It is their domain specific entities, features and topology, which opens the

door to a reference protocol that is based on one context searching for known or ex-

pected domain specific entities, features and relationships within the other context.

This is a key mechanism of this invention. It provides the machinery for expressing

“anaphoric” references (i.e., references that are implied) in one code entity (e.g., the

framework) to data items (e.g., an image data item that is being used as the output

data item for a computation) in a separate, disparate and as yet undefined code entity

(e.g., a computational payload to be used within the framework). This mechanism is

called the Anaphoric Reference Protocol for Synchronization (ARPS). (See [7].) The

anaphoric reference mechanism expresses references in terms of semantic (and large-

ly domain specific) abstractions rather than in programming language structural forms

or patterns (e.g., loops, code blocks, operators, etc.) or abstractions thereof. For ex-

ample, a structure field within a framework may need a value from some as yet to be

defined computational payload. Semantically, the framework knows only that that

value will be an image that is being used as the input image of the payload computa-

tion. ARPS provides a domain specific notation whereby that relationship can be ex-

pressed in the definition of the field within the framework. ARPS provides machinery

such that when a candidate computational payload is eventually identified, that ARPS

reference will be used like a search query and will automatically resolve to the specif-

ic data item needed by the framework.

Once the ARPS expressions in a framework determine the conceptually corre-

sponding items in the payload, the automated redesigners are invoked to redesign

those payload items so that they are consistent with the framework design. Then the

payload code (suitably redesigned to synchronize with the framework design) can be

directly inserted into the holes of the framework.

2 CQ Types, Their Relationships and Type Differencing

2.1 Overview

A CQ type is a programming language type (e.g., a grayscale image matrix type

designated as “BWImage”) that has additional Qualifying Properties specific to an-

other context (e.g., a design feature, such as the payload scope “ScopeP”). CQ Types

allow the generator to express concepts that transcend the strictly programming lan-

guage domain. That is, the CQ type concepts include generation entities, contexts and

operations rather than being strictly limited to programming language entities, con-

texts and operations. Qualifiers can represent design features that do not yet have any

program structure manifestation (e.g., an anticipated but not yet created program

scope).

A CQ type is designed to have an explicit functional relationship to other CQ

types. Fig. 2 shows the conceptual form of relationships between a programming

language type (Ref. 2-07) and a number of abstract CQ types (Refs. 2-08a through 2-

10), where the CQ property for this example is the name of a payload or framework

scope (e.g., ScopeP or ScopeF). In Fig. 2, CQ Types are shown as ovals and instances

of those types as boxes. The type to type relationships are implemented via either

subtype/supertype relationships (e.g., Refs. 2-08a and 2-09a) or a cross context map-

ping relationship (Ref. 2-18) that defines some elective transformational mapping

between (in the example) an instance of the payload context and a related instance in

the framework context. The transformations between instances of CQ subtypes and

supertypes (i.e., type differences) are automatically derived from the two CQ types.

Cross context mapping transforms (i.e., those between CQ Types that do not have a

subtype or supertype interrelationship) are elective and therefore are custom written

by a design engineer at the time the related design framework (e.g., TDF) is created.

They are designed only once for a specific reusable design framework (e.g., TDF) but

will be used/instantiated many times to generate many different concrete, target pro-

grams. In the example of this paper, the mapping relationship is computational equiv-

alence between the end points of the type chain (i.e., between instance P2 and in-

stance F2. That is, execution of the initial computational form (P2) in the payload

scope will produce the same result as the execution of a different but operationally

equivalent computational form (F2) in the framework scope.

Furthermore, each pair of connected CQ Types (i.e., type/supertype or cross con-

nection) implies two, directionally specific Redesign Transformations that will con-

vert an instance of one of the types into an instance of the other that is one step farther

along on the path to computational equivalence. The type/subtype transformations are

automatically derivable via so called type differencing operations. The form of the

type differencing transformations is deterministically implied by the type constructor

operators. By contrast, cross connection transforms are custom created by a domain

engineer. Example cross context mappings include, computational equivalence (as in

the example presented), data type casts, design translation options, etc. Because all

relationships define explicit functional relationships, the generator can use type dif-

ferencing to harvest a set of Redesign Transformations (i.e., transformations X1

through X5 in Fig. 2) that carry a payload instance P1 of a programming language

type used in the payload context into a computationally equivalent instance F1 of a

type used in the framework context. X1 and X6 map between the domain of pro-

gramming language data types and the CQ Types with the design domain.

Fig. 2. Chain of CQ Types relating two different design contexts

Fig. 3 provides a concrete example that may be used to solve part of the problem

illustrated in Fig. 1. As a debugging aid, CQ Type names are designed to expose both

the base programming data type (e.g., “BWImage” or “int”) as well as their qualifying

property pairs (e.g., “:myscope ScopeF”). The implementation machinery necessitates

some special syntax within the type names, specifically, underscores to bind the name

parts together and vertical bars to delineate the beginning and ending of the type

name. All CQ Types will have “tags” that uniquely identify them (E.g., BWi7, Ptr1 or

Field1). These tags may be used in a CQ Type name to reference another CQ Type

(e.g., tag “BWi7” in type Ref. 3-02a references its super type Ref. 3-01a).

The instance to instance transformations of Fig. 3 make it clear that subtyping

within CQ Types is used to capture subpart/superpart relationships (among others)

between design constructs, and thereby it may also imply the construc-

tion/deconstruction operations required to achieve transitions between design views

and/or design contexts. For example, “B” from the computation specification context

(Ref. 3-04) represents the same entity as “B” within the payload scope context (Ref.

3-05) but “(& B)” (Ref. 3-06) is a computational form that represents one step on the

pathway to the full computational equivalence finally realized in Ref. 3-09.

Harvesting the transformations implied in Fig. 3 (i.e., X2 through X5) by differenc-

ing the CQ Types and applying those transforms to a payload oriented expression like

 PartialAns = (B[idx13+(p29 -1)][idx14+(q30 -1)] * w[p29] [q30]) ; (1)

will convert (1) into a design framework context expression like

PartialAns = ((*(rsparms9.BP))[idx13+(p29 -1)][idx14+(q30 -1)]

 * w[p29] [q30]); (2)

thereby allowing it to be relocated into a hole in the TDF design framework (e.g., Ref.

1-03). Such relocation assumes, of course, that other payload specific entities (e.g.,

the start, increment and end values of indexes such as“idx13”, “idx14”, “p29”, etc.)

will have to be similarly redesigned.

X
2X
5

X
4

X
6

Fig. 3. A concrete example relating framework and payload design contexts

The computational domain of the PartialAns example is the convolution of 2D dig-

ital images (where “B” is the image from the example). The deeper programming

language design context (i.e., problem specific domain knowledge) for these expres-

sions is as follows: idx13 and idx14 are variables that index over some image matrix

B; p29 and p30 are offsets for pixels in a neighborhood around the current pixel

“B[idx13, idx14]”; and w is an array of multiplicative coefficients defining the rela-

tive contribution of a neighborhood pixel to the overall magnitude of the PartialAns

value. In a complete description of the required redesign operations for this example,

analogous CQ Type chains would exist for the start, increment and end values of the

indexes idx13, idx14, p29, p30, and possibly other needed data entities. And these

would engender analogous conversions for these data entities.

While the example in this paper uses the names B, idx13, idx14, p29 and p30 for

concreteness, DSLGen uses an abstract domain specific model for the computation it

is operating on. That is to say, it models a convolution in terms of image matrix ab-

stractions, matrix index abstractions, neighborhood abstractions and neighborhood

loop index abstractions none of which map into concrete programming language

names and entities until very late in the generation process. That is, mapping

DSLGen’s domain abstractions (e.g., neighborhood loop index abstractions) into con-

crete names like idx13 and idx14 is deferred until the overall design is complete and

the design has stopped evolving, because during that evolution process, the associa-

tions between domain abstractions and concrete target names will change to accom-

modate the evolution of the design. That being said, the author believes that the use of

concrete names for this description will aid the reader’s understanding of the process

and therefore, this paper will continue to use concrete names.

Next, we will define the machinery required to construct Fig. 3 and unlimited

numbers of similar constructions from (reusable) parameterized type specifications.

Then we will use these constructions to redesign code.

2.2 Solving Simultaneous Parameterized Type Equations

The CQ types of Fig. 3 contain design elements that are custom formulated to pro-

duce one set of redesign transformations that are specific to the data entity “B” (be-

cause of the concrete field names in type 3-03) within a specific target computation

that is to be transformed from a specific payload context to a specific framework con-

text. In order to solve the more general problem that is described in Section 1, other

analogous QC Type chains and redesign transformations will have to be developed

for other specific data entities in that target computation (e.g., other image variables

along with loops’ start, end and increment values, e.g., those values for “Idx14”). That

is, Fig. 3 must be abstracted and the instantiation of that abstraction automated. It

would be a serious impediment to full automation of the generation process to require

a human to custom build of each of the individual type structure analogs of Fig. 3 for

all of the data entities within a specific computation. Hence, there needs to be a single

(reusable) precursor abstraction or abstractions from which all Fig. 3 analogs and the

type difference transformation analogs associated with all target computations (in-

cluding Fig. 3) can be automatically derived. That single precursor abstraction com-

prises: 1) a set of parameterized type equations (expressions (3)-(7) below) that cap-

ture, in a more abstract and reusable sense, the relationships (i.e., type chains) illus-

trated in Fig. 3 and 2) two special parameterized type difference transformations spe-

cific to the TDF framework that express the cross connection mapping between the

two type subtrees. One of these TDF framework supplied difference transformations

is shown as expression (9) below. The cross connection transformations are identified

in Fig. 3 as Ref. 3-13 (labeled X3). Ref. 3-13 represents both mappings to and from

instances of the types 3-02a and 3-03.

The remainder of this section will describe that parameterized precursor specifica-

tion. It is expressed as a set of simultaneous type equations (expressions (3)-(7) be-

low). This section will further describe the process by which those type equations are

incrementally solved to produce concrete CQ Types (Refs. 3-01a & b, 3-02a & b, and

3-03) and simultaneously to produce type difference transformations (Ref. 3-12

through 3-15 in Fig. 3), which are represented more concretely, as expressions (8)-

(11) below. In the course of these steps, the type difference transformations are in-

crementally applied to a starting instance of one of those types (Ref. 3-05) and then to

its derivatives (3-06 through 3-08) to derive the correspondence between “B” in

scopeP and the equivalent glue code “(* (● BP rsparms9))” in scopeF, which will

eventually become the C language code “(*(rsparms9.BP))”.

The simultaneous parameterized type equations that will generate Fig. 3 (and all of

its analogs for similarly structured problems) are expressions (3)-(7):

(?t1 = (?itype :myscope ?Pscope :Instname '?StartInst)) ;;spec for type 3-01a (3)

(?t2 = (DSDefPtr ?t1 :Instname ‘?PPtrinst)) ;;spec for type 3-02a (4)

(?t5 = (?itype :myscope ?Fscope)) ;; spec for type3-01b (5)

(?t4 = (DSDefPtr ?t5 :Instname ‘?FPtrinst)) ;; spec for type 3-02b (6)

(?t3 = (DSDefFieldOp (?Fldname ?Structname :dsvalue ?PPtrinst

 :myscope ?Fscope :Instname ‘?Fldinst)

 ?t4)) ;; spec for type 3-03 (7)

The type constructor functions used in these expressions (i.e., DSDefPtr,

DSDefFieldOp as well as the qualified programming language data types of the form

“(<atype> <qualifiers>…)) will be described here informally. This description in

combination with the contextual intuition provided by Fig. 3 and the sampling of

formal definitional forms of section 3 of this paper should provide sufficient insight to

understand the essence of them and the associated process. However, the full set of

type constructors available in DSLGen (e.g., DSDef… constructors for Ptr, Field,

Struct, Bit, Enum, Union, Function, Array and qualified programming language data

types) is described more completely and formally in [7] (Patent No. 8,713,515). Any

additional user defined type constructors will follow the same patterns.

Basically, each equation’s right hand side is a type constructor expression of the

form (operator …arguments …), which specifies a composite CQ Type. Implied func-

tionally related types within these forms are expressed via the variables ?t1, ?t2, etc.,

and represent recursively related CQ types (often related via type/supertype relation-

ships). For example, the equation (4) of the form “(DSDefPtr ?t1 …)” is a pointer

type (which will eventually become type 3-02a). The referenced supertype is repre-

sented by the variable ?t1, which is bound to the “(?itype :myscope ?Pscope

:Instname '?StartInst)” type specification from equation (3). ?t1 will become the type

3-01a in Fig. 3. The “:name value” pairs in these expressions (e.g., “:myscope

?Pscope”) are qualifying information used to describe generator design contexts or

features that fall outside of the strict domain of conventional data types. Explanatory

comments appear to the right of the double semicolons. The “:Instname ‘<?vbl>”

pairs (omitted in Fig. 3 to save space) provide (quoted) simultaneous variable names

to the type differencing routines that harvest the ReDesign transformations associated

with type pairs. These variables provide global relationships among the individual

type equations, the related type difference transformations and the instances upon

which those difference transformation operate. For example, difference transfor-

mation (9) that relates types 3-01a and 3-02a will bind the instance of type 3-02a

(e.g., “(& B)”) to the transformation variable name “?PPtrinst.” That value of

?PPtrinst is later used in the value slot of the field instance (i.e., 3-07) being con-

structed for the field type 3-03. Expression (9) also contains some embedded Lisp

code that will create a human friendly name for the pointer field thereby making the

generated code a bit easier to understand. It concatenates ?Pinst’s value (e.g., “B”)

with the letter “P” resulting in the pointer field being named “BP” in the Fscope con-

text (i.e., “BP” in Fig. 3). It then calls “DSRuntimeDeclare” to declare “BP” to be an

instance of type ?t1. The C language code generated to reference the BWimage B

within the Fscope will be something like “(rsparms9.BP)” (see expression (2)). The

results for other needed variables from Pscope (e.g., “Incr-Idx14) will acquire analo-

gous names (e.g., “Incr-Idx14P”).

To solve these type equations, we will need to use the type differencing transforms

implied by these type relationships since they express the relationships of these CQ

Types to legitimate instances of them and thereby, they recursively constrain subse-

quent CQ Types and instances. For example, consider the type differencing transfor-

mation from ?t1 to ?t2, which is symbolically expressed as “(delta ?t1 ?t2)” and which

is nominally defined by the transformation expression to the right of the “=” sign in

expression (8) below. Within that transformation expression, the sub-expression to the

left of the “=>” is the pattern of the (delta ?t1 ?t2) transformation. That pattern is an

“AND” pattern (operationally the Lisp expression “$(PAND ..)”). An AND pattern

requires that all of its constituent sub-patterns successfully match some instance of

type ?t1. That is, its first pattern element “?inst01” will succeed (because it is initially

unbound) by matching an instance of type ?t1 (e.g., “B”) and binding that instance to

a pattern variable (i.e., “?inst01”) where the variable name is uniquely generated by

the machinery that generates the type difference transformation. The second pattern

element of the AND operator, i.e., “?StartInst”, will succeed by binding that same

instance to the pattern variable (i.e., “?StartInst”), where “?StartInst” was supplied by

the property pair “:Instname '?StartInst” from the specification of type ?t1 shown in

expression (3). If the pattern match is successful, then the right hand side of the trans-

formation (i.e., the expression to the right of “=>”, which is “(& ?inst01)”) will con-

vert ?inst01 to an instance of ?t2 (i.e., “(& B)”). Subsequently, the next type differ-

ence (i.e., “(delta ?t2 ?t3)” defined in expression (8)) will bind that newly created

instance (i.e., “(& B)”) to the variable ?PPtrinst, which will eventually be used in the

dsvalue slot of ?t5.

The transformational essences that are the results of differencing the functionally

related types in equations (3)-(7) are shown in the expressions (8)-(11). Difference (8)

executes the operation that is defined by the DSDefPtr constructor of type equation

(4). Similarly, the differences (10) and (11) just express the implied inverses of the

type constructors DSDefFieldOP and DSDefPtr of type equations (7) and (6). Differ-

ence (9) is the cross context mapping relationship and is supplied by the design

framework TDF in the generator’s library. The TDF framework is built specifically

for generating the adaptive “glue code” that we have been discussing up to this point.

((Delta ?t1 ?t2) ~ ($(pand ?inst01 ?StartInst) =>

 (& ?inst01))) ;; ?inst01 is globally unique name (8)

((Delta ?t2 ?t3) ~ ;; Cross Connection written by a Design Engineer for TDF

 ($(pand ?PPtrInst $(plisp (MakeBinding '?Fldname

(DSRuntimeDeclare (quote ?t1) (symb ?StartInst 'P))))))

 => (?Fldname ?Structname :dsvalue ?PPtrInst))) ;;Field Def. form (9)

 ((Delta ?t3 ?t4) ~ ;; Field def. form to dot operator

 ($(pand ?Fldinst (?fld ?struct :dsvalue ?PPtrInst)) => (● ?fld ?struct))) (10)

 ((Delta ?t4 ?t5) ~ ;; Dereference pointer result of dot operation

 ($(pand ?inst02 ?FPtrinst) => (* ?inst02))) (11)

Operationally, these type Delta transformations are implemented by ReDesign

multi-methods4 that are uniquely determined by the method name (“ReDesign) plus

their first two arguments, type1 and type2. ReDesign methods also take additional

arguments: 1) an instance of type1, and 2) an initial set of bindings. The initial bind-

ings include bindings determined by the TDF framework context (e.g., the bindings

“(?itype bwimage)” and “(?structname rsparms9)”) ; bindings that arose during type

equation solution process (e.g., “(?t5 |(bwimage_bwi8_:myscope_scopef)|)”) ; and

bindings created by previously processed ReDesign steps (e.g., “(?startinst B)”).

So, what does a ReDesigner look like? Expression (12) is some CommonLisp like

pseudo-code that specifies the essence of a ReDesigner’s processing.

(ReDesign type1 type2 instance bindings) ::=

(let ((newinstance nil))

 (multiple-value-bind (success postmatchbindings)

(match (LHS (Delta type1 type2)) instance bindings)

(if success (setf newinstance

 (applysubstitution (RHS (Delta type1 type2))

 postmatchbindings)))

 (values success postmatchbindings newinstance))) (12)

4 These multi-methods are expressed in the CLOS (CommonLisp Object System) language

embedded in CommonLisp. They are automatically generated during the process that solves

the type equations for concrete types. The single exceptions to automatic generation are any

cross type differencing methods (e.g., expression (9)), which are written by the Design En-

gineer at the time the design framework (e.g., TDF) is created and entered into the reusable

library of frameworks. They express elective design mappings between CQ types.

In (12), the CommonLisp multiple-value-bind operator defines a scope with two

local Lisp variables (i.e., success and postmatchbindings) to receive the multiple val-

ues returned from the match routine, which matches the left hand side (LHS) pattern

of the specific type Delta transformation against the instance argument. The match

starts using the existing bindings in the variable “bindings”. If the match is successful

(i.e., success equals t on match’s exit), then the new instance will be the right hand

side (RHS) of the Delta instantiated with the bindings returned from match, i.e.,

postmatchbindings, which are the initial bindings extended by any new bindings cre-

ated by the match routine (e.g., “(?startinst B)”). The ReDesigner returns three val-

ues: 1) the success flag, 2) the postmatchbindings and 3) the newinstance, where the

latter two variables will have legitimate values only if success equals t.

Before the type equations are solved, a typical set of initial bindings supplied by

the TDF setup code might be:

((?itype bwimage) (?pscope scopep) (?fscope scopef) (?structname rsparms9)) (13)

After the type equations are solved creating a set of types like those shown in Fig. 3,

the binding list (13) will be extended with bindings of concrete types for the variables

?t1, ?t2, ?t3,?t4 and ?t5. Following that process, all of the difference expressions (8-

11) will be processed, resulting in a set of final bindings, for example:

((?fptrinst (● bp rsparms9)) (?inst02 (● bp rsparms9)) (?fldname bp)

 (?pptrinst (& b)) (?inst01 b) (?startinst b) (?fldinst (bp rsparms9 :dsvalue (& b)))

 (?struct rsparms9) (?itype bwimage) (?pscope scopep) (?fscope scopef)

 (?structname rsparms9)

 (?t3 |(dsdeffieldop_field1_(?fldname_rsparms9_:dsvalue_ ?pptrinst_:myscope

 scopef:instname_'?fldinst)_ptr2)|)

 (?t4 |(dsdefptr_ptr2_bwi8_:myscope_scopef_:instname_'?fptrinst)|)

 (?t5 |(bwimage_bwi8_:myscope_scopef)|)

 (?t2 |(dsdefptr_ptr1_bwi7_:myscope_scopep_:instname_'?pptrinst)|)

 (?t1 |(bwimage_bwi7_:myscope_scopep_:instname_'?startinst)|)

… …) (14)

The chain of instances produced by this process is shown in expression (15):

b, (& b), (bp rsparms9 :dsvalue (& b)), (● bp rsparms9), (* (● bp rsparms9)) (15)

Thus, “b” from expression (1) in scopep will map into the expression “(* (● bp

rsparms9))” within expression (2), which is in scopef. At code generation time, when

the C language surface syntax is added to the internal form, it will be re-expressed as

the C language form “(* (rsparms9.bp))”.

3 Recursive Type Constructors

The machinery used to synchronize payloads and frameworks uses the CQ Type

system to simultaneously define a conventional data type and a design context point

of view for that conventional data type. It accomplishes this by defining types as re-

cursive expressions of other types that capture both the data type and the design point

of view within some recursive design space. The pattern of types and subtypes will

recapitulate the pattern of recursion. That is, a type is some functional composition of

its subtypes. For example, a pointer to a BWImage type is a subtype of a BWImage.

Thus, type/subtype structures mimic the specialization and generalization of a design

space. However, not all design space relations are specialization or generalizations.

Some relations are bridges between design spaces that neither specialize nor general-

ize design context. They transform design contexts. That is, they establish a transfor-

mation or a mapping between design contexts. The cross connection transformation

(Ref. 3-09) is just such a bridge. In this case, the design point of view for the

BWImage entity has transitioned from a simple design context (i.e., the payload) to a

different design context (i.e., the framework context containing the “glue” code man-

ufactured by the generator to synchronize the computational contexts). Within the

framework context, the BWImage data entity must have the computational form of a

value within a field of the struct manufactured by the generator. That is, in the pay-

load context, the BWImage entity might have the computational form “b” whereas in

the related framework context, that data entity might have the related computational

form “(*(csparm9.bp))”. The computational forms both refer to the same entity but

from different design context points of view.

In general, transitions within a design space, be they generalizations, specializa-

tions or bridge transformations, represent a transition of design point of view. And

this transition may or may not require a transformation of the computational form for

a data entity. So, how do we build such a design space?

The system that implements this machinery is defined by a few basic type con-

structor elements. A sampling of these constructor elements is expressed below in

extended BNF, where non-terminals are enclosed in angle brackets and terminals are

enclosed in double quotes. Square brackets indicate optionality, braces indicate

grouping, and double bars indicate alternation. Parentheses indicate CommonLisp like

list and sublist structures that express the form of an instance. Finally, “::=” means “is

defined as.”

The following sampling of definitions illustrates the form of some typical CQ Type

constructor expressions and includes examples, some drawn from expression 14:

<ArrayType>::=(“DSDefArray”[<tag>](<D1><D2>...)<atype> <keyword parms>)

Example CQ Type: |(dsdefarray_array4_(m_n)_colorimage_:instname_'?foo)|

<FieldType> ::= (“DSDefFieldOP” [<ftag>]

 (<fieldname> <structtag> <keyword parms>)

 <resulttype>)

Example CQ Type: |(dsdeffieldop_field1_(?fldname_rsparms9_:dsvalue

 _ ?pptrinst_:myscope_scopef_:instname_'?fldinst)_ptr2)|

<StructType> ::= (“DSDefStruct” [<stag>]

 ((<ptype1> <name1> <keyword parms>)

 (<ptype2> <name2> <keyword parms>)...))

<PointerType> ::= (“DSDefPtr” [<ptag>] <supertype> <keyword parms>)

Example CQ Type: |(dsdefptr_ptr1_bwi7_:myscope_scopep_:instname_'?pptrinst)|

<C-type-specs> ::= { [<storageclass>] || [<typequalifiers>] || [<type-spec>] }

<PLType> ::= (<type> [<ttag>] [<C-type-specs>] [<keyword parms>)])

Example CQ Type: |(bwimage_bwi7_:myscope_scopep_:instname_'?startinst)|

Beyond the CommonLisp syntactic framework in which these type specifications

are embedded, these CQ type expressions also borrow from the C programming lan-

guage, which is the default language emitted by the generation system. As with their

C counterparts, the optional “tag” fields provide a handle for the composite type. The

<keyword parms> (e.g., the keyword “:myscope” paired with the value “ScopeF”)

provide the mechanism for qualifying types with design features, design contexts or

other qualifications specific to the generation process. Keyword based qualifications

are “meta-qualifications,” which is to say that they are “meta” to data types that are

specific to the programming language domain. The list of <ptype n> groups within

StructType definition is shorthand for a list of <FieldType> types.

In addition to program generation qualifiers, the qualifiers used in the <PLType>

definition may also include vanilla programming language data types and type quali-

fiers, e.g., C type qualifiers from <C-type-specs>. For example, <storageclass> may

include auto, extern, register, static and typedef; <typequalifiers> may include const,

restrict, and volatile; and <type-spec> may include short, long, signed, and unsigned.

Declarations are defined using a CQ type specification (e.g., <CQ Type Expres-

sion>) in place of a simple programming language data type, for example:

<Declaration> ::= (DSDeclare <CQ Type Expression> [<Instance>])

4 Related Research

From the most general perspective, the purpose of this research is program genera-

tion. For general background, see [1-5] and for the DSLGen umbrella research con-

text of this paper, see [6]. However, the details of the machinery in this paper are

most closely related Programming Data Type research. Therefore, this section will

focus largely on the relationships and differences between the CQ Type research area

the programming date type research area. (See [8-9] and [11-12]). Broadly speaking,

data types have been used in the pursuit of several different but related objectives:

• Type checking and inference to reduce errors in the context of strongly

typed programming languages,

• Program language design for enhancing reusability of code (e.g., through

abstract data types, object oriented programming and polymorphism),

• Program language design to simplify programming and enhance the ability

to write correct programs (e.g., via functional and applicative languages

where types may play a significant role in specification and compilation),

• Writing correct programs from formal specifications (e.g., stepwise re-

finement),

• Formal specification of the “meaning” (i.e., semantics) of computer pro-

gramming elements (e.g., denotational semantics and models like the Z lan-

guage or the VDM method).

The main difference between the CQ Types research and previous data type re-

search is that CQ Types research is operating in the design domain space whereas

previous work was to a greater or less extent operating in the programming language

domain space. That is, previous conceptions of types did not provide a way to express

design concepts except to the degree that those design concepts were expressible in

terms of programming language constructs or abstractions thereof.

To choose a concrete example, consider the Liskov substitution principle. This

principle “seems” to bear some cosmetic relationship to CQ Types and their associat-

ed operations in the sense that the work is characterizing the situation in which a sub-

type is computationally substitutable for its super type in a piece of code. That is, the

Liskov substitution principle is superficially similar to the CQ Type work in the sense

it deals with mapping one form of programming language code to a related form.

However, it is different it two obvious and important ways. The Liskov substitution

principle works strictly within the domain of programming types and the type/subtype

relationship depends on an implicit property of both. CQ Types are defined specifical-

ly to work within and capture knowledge about the design space (as opposed to the

programming language space) and thereby involve entities (e.g., design features and

design contexts) that are not explicit elements of the programming language domain.

Furthermore, the relationships among CQ Types are explicit rather than implicit and

they explicitly capture differences in computational structure that are due to implicit

relationships within the design and generation domains (i.e., outside of programming

language domain).

5 Summary and Conclusions

CQ Types provide a mechanism for expressing abstract relationships between enti-

ties within a conceptual design space and thereby for specifying plans for adapting

and relocating code from one design context to another. What constitutes a context is

completely open. A context might represent a simple design feature, a locale or scope,

a set of computational states, an abstract design for code, a computational partition,

etc. This expressive freedom allows the generator to evolve logical designs for a

computation by adding elective design features (e.g., threaded parallelism) to pedes-

trian and perhaps inefficient designs of a computation while still having the capability

to automatically convert from one design form to another.

Furthermore, CQ Types and their associated type difference transformations can be

abstracted to precursor equations that parameterize the concrete entities and relation-

ships, which will become concrete via instantiation from some future concrete code

within some future payload instance. This allows design frameworks to factor out and

express only those design elements and relationships that are determined by the

framework, e.g., the relationship between a yet-to-be-determined variable in a pay-

load and its yet-to-be-determined field representation within a structure that connects

the payload data to the framework operations. Once such a concrete future payload

has been identified to the generator, the yet-to-be-determined elements can be com-

puted by the generator to complete a fully integrated design for the target program.

References

1. Ted J. Biggerstaff, “A perspective of generative reuse, Annals of Software Engineering,”

Baltzer Science Publishers, AE Bussum, The Netherlands, 1998, pp.169-226.

2. Ted J. Biggerstaff, “A new architecture of transformation-based generators,” IEEE Trans-

actions on Software Engineering, Vol. 30, No. 12, Dec., 2004, 1036-1054.

3. Ted J. Biggerstaff, “Automated partitioning of a computation for parallel or other high ca-

pability architecture,” Patent no. 8,060,857, United States Patent and Trademark Office,

filed January 31, 2009, issued November 15, 2011.

4. Ted J. Biggerstaff, “Non-localized constraints for automated program generation,” United

States Patent and Trademark Office, Patent no. 8,225,277, filed April 25, 2010, issued July

17, 2012.

5. Ted J. Biggerstaff, “Synthetic partitioning for imposing implementation design patterns

onto logical architectures of computations,” United States Patent and Trademark Office,

Patent no. 8,327,321, filed August 27, 2011, issued Dec. 4, 2012.

6. Ted J. Biggerstaff, “Reuse: Right Idea, Wrong Representation?” Invited paper in DReMeR

13 – International Workshop on Designing Reusable Components and Measuring Reusa-

bility, Pisa, Italy, June 18, 2013.

7. Ted J. Biggerstaff, “Automated Synchronization of Design Features in Disparate Code

Components Using Type Differencing,” United States Patent and Trademark Office, Pa-

tent no. 8,713,515, issued April 29, 2014.

8. Luca Cardelli and Peter Wegner, “On Understanding Types, Data Abstractions, and Poly-

morphism,” Computing Surveys, Vol. 17, No. 4, December, 1985.

9. Luca Cardelli, “Type Systems,” CRC Handbook of Computer Science and Engineering,

2nd Edition, Ch. 97, 2004.

10. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns, Addison-

Wesley, 1995.

11. Barbara Liskov and Jeannette Wing, “A Behavioral Notion of Subtyping,” ACM Transac-

tions on Programming Languages and Systems, 1994.

12. Barbara Liskov and Jeannette Wing, “A Behavioral Subtyping Using Invariants and Con-

straints,” Carnegie Mellon Report CMU-CS-99-156, 1999.

13. Timothy G. Mattson, Beverly A. Sanders and Berna L. Massingill, Patterns for Parallel

Programming, Addison Wesley, 2008.

