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Abstract—DSLGenTM (Domain Specific Language Generator) 

is a program generation system in which application programs 

can be written in a domain specific language that is 

independent of the execution platform architecture and yet can 

be targeted to arbitrary existing and future execution 

platforms in a way that exploits the performance or 

computation improvement opportunities specific to those 

platforms. This allows switching from one execution platform 

to another without reprogramming the applications. The 

generation of target programs is fully automatic and requires 

no user input or action beyond the specification of the 

computation and the separate specification of the features of 

the target execution platform. 
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I.  INTRODUCTION 

DSLGen
TM

 (patents issued [8] [9] [10]) is a 
transformation-based program generation system that fully 
automatically generates a target implementation from two 
independent specifications: 1) a domain specific, 
Implementation Neutral Specification (INS) of the desired 
computation and 2) a domain specific EXecution Platform 
Specification (EXPS) that describes the features of the 
execution platform upon which the application code will run. 
The INS is invariant over target execution platform 
architectures. That is, an application programmer can make 
no predictions about the architecture of the target 
implementation by looking at the INS alone. Thus, no 
reprogramming of the INS is required to switch from one 
platform to another. Only the EXPS features need to be 
changed to switch from one architecture (e.g., multicore) to 
another (e.g., vector machines). Importantly, DSLGen

TM
 

fully automatically converts an INS and an EXPS into target 
implementation code that takes advantage of a broad range 
of opportunities for high capability computations including 
large grain parallelism (e.g., multicore CPUs), small grain 
parallelism (e.g., instruction level parallelism or ILP), design 
pattern frameworks and so forth. It is theoretically possible 
to extend DSLGen

TM
’s  capabilities to other target execution 

platforms such as GPUs, Digital Signal Processors (DSPs), 
specialized processors, Field Programmable Gate Arrays 
(FPGAs), and API interfaces to layered implementations or 
libraries. The author believes that DSLGen

TM
 can be 

extended with new transform sets that will produce output 
optimized for virtually any arbitrary existing or future 

architecture. How can DSLGen
TM

 automatically produce 
programs that are tailored to such highly varied execution 
architectures? 

The short answer is that DSLGen
TM

 is an extensible 
generator that is designed to create a program design from 
scratch based on the INS plus generalized constraints and 
design features specified in the EXPS. In some sense, it is 
doing what a human programmer does. DSLGen

TM
 

automatically builds a Logical Architecture (LA) that 
constrains some problem domain oriented features of the 
target program design but defers building a Physical 
Architecture (PA) that commits to programming language 
oriented features (e.g., routine architectures, parametric 
connections, communication patterns and synchronization 
patterns).  That is, DSLGen

TM
 architects, designs, constrains, 

reorganizes and optimizes the target program in the problem 
and programming  process domains rather than in the 
programming language (PL) domain and only after the 
macroscopic structure of the program is settled does it 
generate PL code. In short, it designs the solution first and 
codes it second. 

Part of the secret to this process is that DSLGen
TM

 
eschews PL representations during the design and 
architecture portion of the process thereby freeing it from the 
highly restrictive constraints of PLs. PLs  are solution 
oriented not design or architecture oriented. They require the 
programmer to tell how to do a computation whereas during 
these early phases, the programmer knows what needs to be 
done and what design features the solution will have (i.e., the 
computational goals) but has not yet fully determined how to 
implement and integrate the computational needs and 
solution features.  

II. THE PROBLEM 

A key problem in exploiting the capabilities of various 
existing and future execution platform architectures for a 
specific target computation is the conflict between the goal 
of precisely describing the implementation of a target 
computation and the goal of casting the implementation into 
a variety of forms each of which exploits a different set of 
high capability features of some specific execution platform 
architecture (e.g., parallel processing via multicore based 
threads). The key culprit in this conflict is the representation 
system used in the course of creating a target program – that 
is, the use of programming language based abstractions to 
represent the evolving program at each stage of its 
development. Einstein said “We see what our languages 
allow us to see.” And when a computer scientist understands 
his or her world in terms of programming languages, it is 
natural to construct intermediate design and precursor 
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representations in terms of programming language based 
abstractions. This has led to our conventional, reductionist, 
top-down models of program design and development, 
which the author believes has been a key impediment to 
mapping an implementation neutral specification of a 
computation to an arbitrary platform while still exploiting 
whatever high capability features that platform possesses.  

In such a top-down model, the structure and some details 
of a layer of the target program are specified along with 
some abstract representation of the constituent elements (i.e., 
lower level layers) of that layer. In human based application 
of top-down design, the abstract elements of the lower level 
layers are often expressed in terms of an informal pseudo-
code. In the automated versions of top-down design, the 
pseudo-code is often replaced by formal expressions (i.e., 
programming language based expressions) of the interfaces 
to the lower level layers, which may be simple PL calls, 
object oriented invocations, or skeletal forms of elements 
that remain to be defined. Alternatively, these interfaces may 
be calls or invocations to fully defined API layers or 
interfaces to message based protocols (e.g., finite state 
machine specifications). In any case, the structure is fixed at 
a high level before the implications of that structure become 
manifest in a lower level, later in the development process. 
Refinements within the lower layers often require changing 
or revising the structure at a higher level, which can be 
problematic. Further, in an automated system, distinct 
programming design goals will be, by necessity, handled at 
different times. This is further complicated by the fact that 
multiple design goals may be inconsistent (at some level of 
detail) or at least, they may be difficult to harmonize. 

A good example of this kind of difficulty is trying to 
design a program to exploit thread based parallel 
implementation. The exact structure and details of the final 
program are subtly affected by a myriad of possible problem 
features and programming goals. A threaded implementation 
will require some thread synchronization logic which may be 
spread across a number of yet to be defined routines. The 
computation will have to be partitioned into parts that are 
largely determined by the specifics of the target computation. 
These partitions will be mapped into routines and threads 
(e.g., some lightweight computations batched in one thread 
and other heavyweight computations decomposed into slices 
with their own threads). The thread protocol will introduce 
low level implementation details that potentially will have to 
be harmonized across a number of routines. The parameter 
choices for these routines (i.e., the plumbing) may be 
involved in the communication design for these thread 
routines and will be constrained by low level implementation 
details of the thread protocol. In DSLGen

TM
, such 

programming language level routine structures, routine inter-
communication decisions, thread protocol restrictions and 
thread library implementation requirements are added into 
the architecture close to the end of the design process. 

If an automated generator tries to handle all of these 
design issues at once, there is an overwhelming explosion of 
cases to deal with and the approach quickly becomes 
infeasible. 

III. THE SOLUTION 

The ideal solution would be to recognize design goals 
and assert the programming process objectives provisionally 
(e.g., organize the computation to exploit threads) without 
committing fully and early-on to constructing the PL 
structures and details, because those PL structures and details 
are likely to change and evolve as the target program is 
refined toward a final implementation. The ideal solution 
would allow each design issue or feature to be handled 
atomically, one at a time. Then, if necessary, those 
previously asserted provisional commitments could be 
altered before they are cast into concrete code. And this is 
the essence of DSLGen

TM
.  

DSLGen
TM

 allows the construction of a logical 
architecture that levies minimal constraints on the evolving 
program and explicitly defers generating programming 
language expressions early on. That is, initially the LA will 
constrain only the decomposition of a computation into its 
major (and natural) organizational divisions (which are 
called natural partitions) omitting any PL details of the 
programming routine structure or PL details of those major 
organizational divisions. There is no information on control 
structure, routines, functions, threads, parametric 
connections, data flow connections, machine units, 
instruction styles, parallel synchronization structures and so 
forth. All of that is deferred and added step by step as the 
generation process proceeds. In fact, the LA will be revised 
and evolved step by step by the encapsulation of individual 
design features, each of which will further constrain the final 
expression of the target program.  

A. Associative Programming Constraints and the LA 

DSLGen
TM

 builds the LA out of a new kind of 
representation element – an Associative Programming 
Constraint (APC). APCs are partial and provisional 
constraints on the target computation. They do not fully 
determine the target implementation. These APCs come in 
two major varieties: Iteration constraints and partition 
constraints. For example, a loop constraint (a subclass of 
iteration constraint) might specify “i” and “j” to be indexes 
of a matrix “a” that have ranges of [0,(m-1)] and [0,(n-1)], 
respectively. And related to this loop constraint, for example, 
might be a partition constraint (e.g., Edge1) that specifies the 
subdivision of that loop constraint for which (i==0). Nothing 
more about the implementation is determined by these 
constraints. 

Operationally, APCs are CommonLisp Object System 
(CLOS) objects that are associated with elements of the INS 
and initially arise via translation of the INS. They are logical 
in the sense that their essential specification mechanism is 
based on predicate logic assertions. These assertions will be 
altered and extended as the generation process proceeds 
thereby altering and refining the definitions of the 
constraints. APCs are propagated over the INS structure 
(somewhat analogous to APL’s method of loop introduction 
and placement). They are combined in several ways, the 
operational effect of which is to merge equivalent iterations 
or to adapt two slightly different computational cases to a 
single interation scheme. They can be split in two, 
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reorganized into groups that imply future design features and 
revised to incorporate one or more design features. Not until 
later are they actually applied, decomposing the INS into 
specialized subdivisions of the implementation, which 
creates the precursors to actual code. 

Specialize versions of these two major classes of APCs 
may be created by subclassing, thereby allowing other kinds 
of architectural factorings. To provide a concrete context in 
which to discuss the LA and its representational elements, 
we will introduce a problem domain and a domain specific 
language for that problem domain. 

IV. THE PROBLEM DOMAIN AND AN EXAMPLE PROBLEM 

The initial problem domain treated by DSLGen
TM

 is 
digital signal processing (DSP) and includes problems that 
range from signal and image processing to neural networks 
to pattern recognition plus a rich set of related problems. The 
domain specific language used to express the INS is based 
on the Image Algebra (IA) [27].   

As an example computation, we develop a program that 
performs Sobel edge detection on a grayscale image (i.e., 
where the pixels are shades of gray). Such a program would 
take, for example, the image “a” in Fig. 1 as input and 
produce the image “b” in Fig.2 as output. The output image 
has been processed so as to enhance (line) edges of items in 
the image by the Sobel edge detection method. 

Each black and white pixel b[i,j] in the output image “b” 
is computed from an expression involving the sum of 
products of pixels in a neighborhood (e.g., sp, of type 
iatemplate) surrounding the a[i,j] pixel and the coefficients 
defined by that neighborhood (e.g., sp). This is called a 
convolution of a matrix with a template (or neighborhood). 

In the IA, a convolution is designated by the ⊕ operator, e.g., 

(a ⊕ sp). In the following examples, s and sp will designate 
instances of the class iatemplate. Mathematically, the Sobel 
computation is defined as 

 
{Foralli,j (bi,j : bi,j =  sqrt((∑p, q (w(s)p , q * a i+p , j+q)

2
 + 

                   ∑p, q (w(sp)p , q * a i+p , j+q)
2
)}   (1) 

 
where i and j are indexes that range over the matrices a and 
b; p and q are indexes that range over the iatemplate 
neighborhoods s and sp;  and the coefficients of the 
neighborhood (which are also called weights)  are defined by 
the function “w”. For Sobel edge detection, the weights are 
all defined to be 0 if the center pixel of the neighborhood 
corresponds to an edge pixel in the image (i.e., w(s) = 0 and 
w(sp) = 0), and if not an edge pixel, they are defined by the s 
and sp neighborhoods shown in (2).  It is convenient to index 
the neighborhoods in the DSL from -1 to +1 for both 
dimensions so that the current pixel being processed is at   
(0, 0) of the neighborhood. 
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Since an implementation of this computation for a 
parallel computer may not be organized like the 
mathematical formula, it is useful to represent this 
specification more abstractly because such abstractions can 
defer the implementation and organization decisions and 
thereby allow the computation (i.e., what is to be computed) 
to be specified completely separately and somewhat 
independently from the implementation form (i.e., how it is 
to be computed). Thus, the abstract computation 
specification is independent of the architecture of the 
machine that will eventually be chosen to run the code. 
Choosing a different machine architecture for the 
implementation form without making any changes to the 
specification of the computation (i.e., the what), will 
automatically generate a different implementation form that 
is tailored to the new machine’s architecture. More to the 
point, porting from one kind of machine architecture (e.g., 
machines with instruction level parallelism like Intel’s SSE 
instructions) to a different kind of machine architecture (e.g., 
machines with large grain parallelism such as multi-core 
CPUs) can be done automatically by only making trivial 
changes to the machine specifications and no changes to the 
computation specification (i.e., the what). The publication 
form in [27] for the Sobel Edge detection mathematical 
formula (1) is based on the Image Algebra domain specific 
language (DSL). Re-expressing the formula (1) in the Image 
Algebra gives a first cut at the INS for the Sobel example: 
 

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
                                   (3a) 

 
   Of course, the INS will need some declarations for a, b, 

s, sp, etc.: 
 

(DSDeclare IATemplate s :form (array (-1 1) (-1 1))  
:of DSNumber) 

(DSDeclare IATemplate sp :form (array (-1 1) (-1 1))  
:of DSNumber) 

(DSDeclare DSNumber m :facts ((> m 1))) 
(DSDeclare DSNumber n :facts ((> n 1))) 
(DSDeclare BWImage a :form (array m n) :of BWPixel) 
(DSDeclare BWImage b :form (array m n) :of BWPixel)  

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
                                            (3b) 

 
m and n are assumed to be user defined. The DSL type 

declarations (e.g., IATemplate, BWImage, etc.) define 
CLOS types that will eventually refine to C types. The 
“:facts” keyword denotes a conjunction (i.e., list) of facts 
pertinent to the declared item (e.g., m) and will be used to 
infer, for example, that“(i==(m-1))” is false when “(i==0)” is 
true. Beyond (3b), we will also need some definitions for s 

and sp equivalent to (2) and for ⊕, all to be defined later. 
This DSL is the basis of the Implementation Neutral 

Specification (INS) in the examples used throughout the 
remainder of this document. A full description of the IA used 
by DSLGen

TM
 is beyond the scope of this paper (see [27]) 

but a few comments are in order. The IA is much like APL 
in the sense that IA specifications eschew the use of explicit 
looping constructs allowing loops to be implied by IA 
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operators and data structures. The generator will introduce 
implied loops as constraints and, through the manipulation, 
combination and propagation of these constraints, will 
determine the relationships between IA expressions and 
loops. The initial form of the LA arises during this process. 

 

 
 
 
 
In DSLGen

TM
, the Image Algebra is adapted to a more 

utilitarian, LISP based syntax with prefix operators, without 

the pretty symbols (e.g., the convolution operator ⊕ becomes 
a Lisp symbol), and with the w functions in (1) becoming so-
called Method-Transforms (MT), which rewrite Abstract 
Syntax Tree (AST) subtrees. MTs look superficially a bit like 
object oriented methods with a pattern (i.e., the MT’s left 
hand side or lhs) as the analog of a method’s parameter 
sequence and a pure functional expression right hand side 
(rhs) as the analog of a method’s body. MTs will be an 
important component of the intermediate language (IL) by 
which provisional but malleable definitions are expressed. 
For example, w of the neighborhood s is an MT expressed 
as: 

(Defcomponent w (sp  #. ArrayReference ?p ?q) 
   (if (or (== ?i  ?ilow) (== ?j  ?jlow)  
             (== ?i ?ihigh) (== ?j ?jhigh)  
       (tags (constraints partitionmatrixtest edge))) 
        (then 0)                                         
        (else (if (and (!= ?p 0) (!= ?q 0))   
                     (then ?q) 
                     (else (if (and (== ?p 0) (!= ?q 0))  
                                  (then (* 2 ?q)) 
                                  (else 0)))))))                     (4) 
 

where ArrayReference is the name of a shared pattern that 
will recognize an array reference in an AST (e.g., a[i,j]) and 
bind the loop index variables (e.g., i and j) to the pattern 
variables ?i and ?j, the matrix name a to ?a and the 
expressions defining the upper and lower ranges of those 
loop indexes to ?ihigh, ?ilow, etc. The remainder of the lhs 
pattern after ArrayReference will bind ?p and ?q to the loop 
index names used by the inner convolution loops over the 
neighborhood designated by sp.  

The “tags” expression designates a property list for the 
OR conditional expression, which in (4) provides the user 
supplied domain knowledge that the OR expression is a 
partitioning condition for this computation that will identify 
edge partitions and by implication, a non-edge (i.e., center) 
partition. Problem domain concepts like “edge” and “center” 
play a key role in the logical architecture for the target 
computation and beyond that, in imposing design pattern 
frameworks onto a logical architecture. Heuristic rules based 
on domain concepts are the mechanisms whereby 
DSLGen

TM
 chooses a design pattern framework to introduce 

PL structures and clichés (e.g., coordinated routines, 
synchronization patterns and thread management clichés) 
and maps the LA into the structures and clichés of that 
design pattern framework.  

 
 

  
 
 
     
The opportunity for such domain specific heuristic rules 

is open ended, especially given the rich variety of possible 
semantic subclasses of partitions. Different problem 
examples may introduce other domain semantics. For 
example, in the matrix domain, the semantic subclasses 
include corners (e.g., corners are special cases in partitioning 
image averaging computations); non-corner edges also used 
in image averaging; upper and lower triangular matrices, 
which are used in various matrix algorithms; diagonal 
matrices; and so forth. By contrast, in the data structure 
domain, domain subclasses include trees, left and right 
subtrees, red and black nodes, etc. In general, domain 
concepts drive the DSLGen

TM
 program generation process. 

V. THE DESIGN REPRESENTATION SYSTEM 

The first iteration of the logical architecture for the Sobel 
example is shown conceptually in Figure 3. Loop constraints 
are CLOS objects that keep track of loop indexes, loop 
nesting and the logical description of the loop, which 
comprises logical assertions and precursors thereof.  For 
example, Partestx of s is IL manufactured during INS 
reduction. It is a precursor to a logical assertion that will 
refine to a partitioning condition for some (not yet decided 
upon) partition. Partestx of s will eventually be refined to a 
concrete expression such as “(i==0)” in the context of a 

Figure 1. Input Image a 

Figure 2. Output Image b 
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particular partition-based computation (e.g., Edge1). And the 
addition of “(i==0)” to the loop constraint will change the 
form of the C code that is eventually generated for that 
partition by causing the loop over “i” to evaporate and 
possibly allowing the body of the loop to be simplified. In 
the chosen example, the bodies of edge loops undergo 
significant simplification. 

Operationally, Partestx is a closure over one of the 
disjuncts (e.g., (== ?i  ?ilow)) in the OR expression in (4) 
and the translation context bindings (e.g., ((?i i) (?ilow 0)) at 
the time of Partestx formation. That translation time will be 

when an expression like “(a ⊕ s)” is being translated and a 
provisional loop constraint is being introduced and 

propagated to the “⊕” level expression. As loop constraints 
are introduced, propagated and combined (e.g., providing 
loop sharing for separate computations), DSLGen

TM
 

provides machinery for recording design decisions (e.g., 
discarding unneeded loop indexes) via dynamically 
generated transformations that will be applied periodically to 
synchronize the overall design. 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

The loop constraint is associated with a partially 
translated INS expression (by appearing on the INS’s tags 
list). Generally speaking, the loop constraint may be 
associated with a set of partitioning constraints such as the 
Edge1, Edge2, Edge3, Edge4 and Center5 (i.e., the CLOS 
objects) of this example. They indicate a partial and 
provisional decomposition of the loop, where each 
decomposition body eventually will be formed from a cloned 
and specialized version of the associated INS expression. But 
DSLGen

TM
 does not perform the decomposition yet, because 

as the implementation design evolves, the partitioning is 
almost certain to change before it is cast into code. The 

partitioning implied by the set of partition objects is sort of a 
“to do” list and a “to do” list that will likely change before it 
is turned into code. However, this future cloning and 
specialization will be accomplished by using a set of newly 
formed specializations of s, sp and their IL. For example, the 
specialization of a specific neighborhood (e.g., sp) and its IL 
(e.g., w) for a specific partition constraint (e.g., edge1) is 
formed by assuming a truth value for the partitioning 
condition of the partition constraint and partially evaluating 
the IL definitions under that assumption.  For example, for 
Edge1, the MT definition of w of sp, in (4), would partially 
evaluate to a new MT definition, w of sp-edge1: 

 
 (Defcomponent w (sp-edge1 #.ArrayReference ?p ?q) 0)  (5) 
 

The LA is malleable so that DSLGen
TM

 can 
incrementally introduce design features by a process called 
Design Feature Encapsulation (DFE). DFE will revise IL 
definitions, extend and reorganize partition sets and 
occasionally even revise some of the DSLGen

TM
’s own 

transformations that define the overall generation and 
programming process (e.g., when introducing instruction 
level parallelism). 

A. Design Feature Encapsulation 

For our example, let us use an EXPS of “((PL C)  Mcore  
(Threads MS) (LoadLevel (SliceSize 5)))” where C is the 
output language, the target is a multicore machine that 
exploits threaded parallelism using Microsoft’s thread library 
and the design should decompose the computation by slicing 
up some unspecified heavyweight computation using 5 
unspecified units per slice. In the example, the LA specifics 
will be used to disambiguate what is being sliced up (e.g., 
Center5) and what the units are (e.g., matrix rows). 

In figure 3, we have already seen a simple example of 
DFE where IL definitions are specialized to specific logical 
partitions of a target computation. These specializations will 
cause computations along the matrix edges to simplify to a 
single loop that assigns 0 to pixels of that edge. Another 
simple example of DFE is mapping from IA neighborhood 
style indexing to C style indexing. IA style indexing ranges 
from –n to +n for an (2n+1) by (2n+1) neighborhood so that 
the center pixel is at (0,0). In contrast, the C language (i.e., 
the chosen output language) ranges from 0 to 2n. The 
indexing DFE is accomplished by algebraic manipulation of 
the right hand side (i.e., the MT body) of IL involving 
neighborhood loop indexes, which relocates instances of 
those loop indexes appropriately.  

However, one of the most powerful examples of DFE is 
the introduction of architectural design features that alter the 
form of and relationships within the implementation across a 
broad set of coordinated routines, data structures and 
possibly even parallel processes. This is accomplished by the 
use of synthetic partitions, which extend the notion of natural 
partitions by adding implied design feature constraints. 

1) Synthetic Partitions 

In DSLGen
TM

, the generation process is divided into 
named phases, each of which has a narrowly defined 

w   
Partestx
row
col
….

Edge2

Set of Partitions

Edge4

Center5

Partially Translated INS Expression:

b [i,j]= [(a[i,j] s[i,j])
2
+ (a[i,j] sp[i,j])

2
]
1/2
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Figure 3. Initial logical architecture of example 
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generation purpose. The phase most relevant to the 
introduction of wide ranging design features is the Synthetic-
Partitioning phase. During the SyntheticPartitioning phase, 
the generator introduces design features (via synthetic 
partition objects) that will constrain the evolving LA to be 
much more specific to a design for some execution platform. 
These synthetic partitions imply implementation structures 
that exploit high capability features of the execution platform 
and that, when finally re-expressed in a form closer to code,  
may have wide ranging and coordinated affect across much 
of the LA (e.g., via multiple routines that coordinate the use 
of multicore parallel computation). The SyntheticPartitioning 
phase operates on the logical architecture to reorganize the 
partitions and probably (depending on the execution platform 
spec) create synthetic partitions that connect to one or more 
code frameworks. These code frameworks hold the 
implementation details (e.g., thread and synchronization 
management) to be integrated into the evolving target 
program. The synthesis process for this example includes the 
following detailed steps. 

 
Let us say that the EXPS requires that the computation 

should be load leveled (i.e., sliced into smaller computational 
pieces) in anticipation of formulating the computation to run 
in parallel threads on a multicore platform, which we have 
also included in the EXPS. Given these assumptions, Fig. 4 
shows the revised logical architecture for these assumptions 
(with synthetic partitions denoted by dashed boxes). Load 
leveling will introduce two synthetic partitions (e.g., 
Center5-KSegs and Center5-ASeg) that respectively express 
the design feature that decomposes the center partition (i.e., 

Center5) into smaller pieces and the design feature that 
processes each of those smaller pieces.  

Simultaneously, in Fig. 4, the loop constraint from Fig. 3, 
is reformulated into two loop constraints (i.e., Slicer and 
ASlice) that will be required by the synthetic partitions 
Center5-KSegs and Center5-ASeg. This synthesis process 
also introduces versions of the neighborhoods S-Center5 and 
SP-Center5 specialized for Center5-Ksegs and Center5-Aseg 
and generates specialized IL for each. The step size of the 
Slicer loop is inferred from information in the EXPS or by a 
default if the EXPS is silent on the subject. It is represented 
by the IL expression “Rstep(S-Center5-Ksegs)” in Fig. 4. 
For the example, we have chosen a step size of 5. Using this 
step size, Slicer will dynamically compute a new range for 
each instance of the ASlice loop. 

2) Imposing Design Patterns on a Logical Architecture 

Now, DSLGen
TM

 is ready to add in the PL level details 
(e.g., sets of interrelated routines, parametric plumbing, 
thread management clichés and protocols of specific thread 
libraries) by mapping the LA into a PA through use of a 
design pattern framework. To make the example interesting, 
we have assumed a design with thread-based multicore 
parallelism (in the EXPS). 

DSLGen
TM

 allows for a library of design pattern based 
frameworks (i.e., objects with associated PL-like skeletons), 
each of which represents some reasonably small combination 
of related design features. Additionally, each such 
framework has a set of holes (indicated by embolden 
designators) that are tailored to the LA’s combination of 
architectural features. These holes are designed to receive 
computational payloads from the LA (e.g., partition specific 
computations). For example, a particular framework might 
be designed to receive partitions such as image edges that are 
“probably” order n computations (i.e., lightweight 
computations) as well as to receive partitions such as image 
centers that are “probably” order n squared computations 
(i.e., heavyweight computations). Such a framework might 
introduce a set of cooperating PL routines and the parametric 
plumbing among those routines, where the plumbing may 
include some “holes” that will receive data items specific to 
the INS. There may be additional PL design features 
included, such as synchronization patterns for parallel 
computation and detailed thread control clichés. But the 
framework is agnostic about its payload. It says nothing 
about exactly what kind of a computation is occurring in its 
holes. That computational payload information will be 
supplied by the logical architecture. 

So, based on the example LA plus specific features 
required by the EXPS, DSLGen

TM
 will search its design 

pattern data base for a design pattern meeting these criteria. 
It finds one with the following skeletal PL framework: 

 
void  ?managethreads (  )  
   { HANDLE threadPtrs[200];  
      HANDLE handle; 
      /* Launch the thread for lightweight processes. */ 
      handle = (HANDLE)_beginthread( 
                      &?DoOrderNCases , 0, (void*) 0);  

 

 

Figure 4. Revised logical architecture of example 
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      DuplicateHandle(GetCurrentProcess(), handle,  
               GetCurrentProcess(),&threadPtrs[0],  
       0, FALSE, DUPLICATE_SAME_ACCESS);  
     /* Launch the threads for the slices of heavyweight       
         processes. */ 
     {handle = (HANDLE)_beginthread(& ?DoASlice , 0,  
                           (int) (Idex ?SlicerConstraint)   )  ;  

           DuplicateHandle(GetCurrentProcess(), handle,  
                      GetCurrentProcess(),&threadPtrs[tc],  

        0, FALSE, DUPLICATE_SAME_ACCESS);  
        tc++;  }  (tags (constaints ?SlicerConstraint)) 
        long result = WaitForMultipleObjects(tc, threadPtrs,  
                                    true, INFINITE);  }                    (6) 
 
void ?DoASlice (int  (Idex ?SlicerConstraint))  
  {{ ?ins }  (tags (constraints ?ASliceConstraint)) 
     _endthread( );   }                                                   (7) 
 
 void ?DoOrderNCases   (  )  
 {?OrderNCases 
   _endthread( ); }                                                    (8) 
    
Associated with the class of this design pattern is a 

CLOS method whose job is to find key elements in the LA 
and bind them to pattern variables (e.g., ?ins and  
?SlicerConstraint); invent and bind unique names for 
routines (e.g., “SobelCenter8” might be invented for 
?managethreads); clone and specialize the INS to specific 
partitions (e.g., by substituting sp-Edge1 for sp); and 
instantiate the skeletons with the bindings. Notice that the 
design skeletons are agnostic as to what their computational 
payload is going to be. Further, there are no PL like 
connections (e.g., calls to PL routines) between the design 
pattern skeletons and anything in the LA. The only 
requirements of the design pattern are that the LA has 
partitions that represent lightweight processes that can be 
batched in a single thread (e.g., edges) and a heavyweight 
process (e.g., a center) that is partitioned into a slicer 
partition and an implied set of slicee partitions. These 
requirements are determined by domain logic, that is, logical 
rules operating on problem domain information (e.g., 
properties of edges) rather than PL information. 

Space limitations preclude showing the full step by step 
expansion of all these skeletal routines but the thread routine 
that batches the edge partitions (?DoOrderNCases) is 
reasonably short and is interesting in that the edge loops will 
drastically simplify when in-lined and partially evaluated. 
Instantiating with cloning and specialization produces:  

 
 
void SobelEdges9( )  
  { /* Edge1 partitioning condition is  (i=0) */ 
    {for (int j=0; j<=(n-1);++j) 

 b [0,j]= [(a[0,j] ⊕ s-edge1[0,j]) 
2
 +  

                       (a[0,j] ⊕ sp-edge1[0,j]) 
2
] 

1/2
}  

     /* Edge2 partitioning condition is  (j=0) */ 
          {for (int i=0; i<=(m-1);++i)  

         b [i,0]= [(a[i,0] ⊕ s-edge2[i,0]) 
2
 +  

                        (a[i,0] ⊕ sp-edge2[i,0]) 
2
] 

1/2
}  

     /* Edge3 partitioning condition is  (i=(m-1)) */ 
    {for (int j=0; j<=(n-1);++j)  

 b [(m-1),j]= [(a[(m-1),j] ⊕ s-edge3[(m-1),j]) 
2
 +  

                      (a[(m-1),j] ⊕ sp-edge3[(m-1),j]) 
2
] 

1/2
}  

      /* Edge4 partitioning condition is  (i=(n-1)) */ 
     {for (int i=0; i<=(m-1);++i)  

         b [i, (n-1)]= [(a[i, (n-1)] ⊕ s-edge4[i, (n-1)]) 
2
 +  

         (a[i, (n-1)] ⊕ sp-edge4[i, (n-1)]) 
2
] 

1/2
}  

        _endthread( ); }                                                      (9) 
 
Notice that in (9) partial evaluation plus inference has 

caused one of each pair of the edge loops in (9) to evaporate 
and zeros appear in one of the index positions in the array 
expressions. In truth, these loop refinements occur 
concurrently with the inlining of the IL definitions (see the 
following section) but in the name of space, showing it here 
shortens (9) and makes them easier for the reader to 
understand.  

While the expansion of the ?DoASlice routine is longer 
than SobelEdges9, it is important because is shows the 
default partition specialization (i.e., the center slice 
partition). It is populated with the Aslice loop constraint plus 
the INS specialized to S-Center5-ASeg and SP-Center5-
ASeg. The example code is shown with a slice size of 5 but 
alternatively, it could be declared by the user to be a 
parameter. Before inlining the IL definitions, the ?DoASlice 
routine is specialized to: 
 

void SobelCenterSlice10 (int h)  

 {  

  for (int i=h; i<= min((h+ 4),(m-1)); ++i)  

        {for (int j=1; j<=(n-2); ++j)  

    {b [i,j]= [(a[i,j] ⊕ s-center5-Aseg[i,j])
2
 +  

                      (a[i,j] ⊕ sp-center5-ASeg[i,j])
2
]

1/2
 } } 

    _endthread( );   }            (10) 
 
Like (9), form (10) shows the loop refinements out of 

order to save space and make (10) easier to understand. The 
range of j is now [1,(n-2)] rather than [0,(n-1)] because of the 
effect of the partitioning condition.  

3)     Inlining Intermediate Language Definitions 

The DSLGen
TM

 Inlining phase will inline the IL 
definitions, replacing the convolution expressions with their 
definitions such as that of the convolution operator, i.e., 

 
(* (a[(row sp-Edge1 a[i,j] p q),  (col sp-Edge1 a[i,j] p q)] )  
    (w sp-Edge1 a[i,j] p q))

2
                                                 (11) 

 
for each partition specific INS clone. The inlining will 
continue recursively for the lower level IL definitions, e.g., 
row, col and w (where row and col map from neighborhood 
coordinates to matrix coordinates). Since (w sp-Edge1 a[i,j] 
p q) is defined as 0 in (5), expression (11) partially evaluates 
to 0. Similarly, all other convolution expressions involving 
edges partially evaluate to 0. After all of the inlining and 
partial evaluation (but before adding local declarations), 
expression (9) becomes  (12): 
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void Sobel Edges9( )  
 { /* Edge1 partitioning condition is  (i=0) */ 
   {for (int j=0; j<=(n-1);++j) b [0,j]=0;}  
  /* Edge2 partitioning condition is  (j=0) */ 
  {for (int i=0; i<=(m-1);++i) b [i,0]= b [0,j]=0;}  
  /* Edge3 partitioning condition is  (i=(m-1)) */ 
 {for (int j=0; j<=(n-1);++j) b [(m-1),j]=0;}  
  /* Edge4 partitioning condition is  (i=(n-1)) */ 
         {for (int i=0; i<=(m-1);++i) b [i, (n-1)]= 0;}  
   _endthread( ); }                                                (12) 
 
And analogously for the ?DoASlice routine, after a series 

of inlining steps analogous to the Edge1 partition refinement 
process but without the extensive simplification engendered 
by the IL definitions for the edge partitions, the center slice 
partition case (10) refines into: 
 
void SobelCenterSlice10 (int h)  

{long ANS45;  long ANS46;  
 /*  Center5-KSegs partitioning condition is   
      (and (not (i=0))  (not (j=0))  (not (i=(m-1)))  
              (not (j=(n-1)))) */ 
  /*  Center5-ASeg partitioning condition is   
       (and (not (i=0))  (not (j=0))  (not (i=(m-1)))  
                (not (j=(n-1))) (h<=i) (i<=(min (h+4) (m-1)))*/ 
   for (int i=h; i<=min((h+ 4),(m-1)); ++i) {  
      for (int j=1; j<=(n-2); ++j) {  
  ANS45 = 0;   
  ANS46 = 0;  
  for (int p=0; p<=2; ++p) {  
    for (int q=0; q<=2; ++q) {  

      ANS45 +=  
        (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))*  
            ((((p - 1) != 0) && ((q -  1) != 0)) ? (p - 1):  

  ((((p - 1) != 0) && ((q -  1) == 0)) ?  
                             (2 * (p - 1)): 0)));  
              ANS46 +=  
          (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))* 

            ((((p - 1) != 0) && ((q -  1) != 0)) ? (q - 1):  
   ((((p - 1) == 0) && ((q -  1) != 0)) ?  

      (2 * (q -  1)): 0)));   }}  
             int i1 = ISQRT ((pow ((ANS46), 2) +   

            pow ((ANS45), 2)));  
        i1 = (i1 < 0) ? 0 : ((i1 > 0xFFFF) ? 0xFFFF : i1); 
        ((*((*(A + (i))) + j))) = (BWPIXEL)  i1;   }} 
         _endthread( ); }                                                 (13) 
 
The examples are adapted from generated code to 

accommodate the format and space available. For example, 
in generated code, i and j would be generated names like 
idx3 and idx4. Similarly, p and q would be something like 
p15 and q16. Additionally, in (13), a discussion of the 
introduction of the answer variables (e.g., ANS45) and the 
masking expression near the end is beyond the scope of this 
paper.  

The reader will note that the inlining step has introduced 
some common sub-expressions (e.g., (p - 1)) which will 
degrade the overall performance if not removed. If this code 

is targeted to a good optimizing compiler, these common 
sub-expressions will be removed by that compiler and 
thereby the performance improved. However, if the target 
compiler is not able to perform this task, DSLGen

TM
 offers 

the option of having the generator system remove the 
common sub-expressions and this can be easily added to the 
specification of the execution platform. However, the 
common sub-expressions are explicitly included in this 
example (i.e., not optimized away) to make the connection to 
the structures of the MTs used by the INS more obvious to 
the reader. The broad structure of the right hand operand of 
the times (*) operator in the right hand side of the 
assignments to the answer variables ANS45 and ANS46 is 
structurally the same as that of the W method transform 
specialized to the center partition for SP and S. That is, the 
right hand side of the C form: 

 

((((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))    *  

  ((((p - 1) != 0) && ((q -  1) != 0)) ? (q - 1):  

   ((((p - 1) == 0) && ((q - 1) != 0)) ? (2 * (q - 1)): 0)))   (14) 

 
mimics the form of the MT definition for w of SP-Center5 
because (14) is derived by inlining that MT definition and 
eventually processing it into legal C.  For reference, the rhs 
of the MT definition of w of SP-Center5 has the form 
 

(if (and (!= ?p 0) (!= ?q 0))   

      (then ?q) 

      (else (if  (and (== ?p 0) (!= ?q 0))  

              (then (* 2 ?q)) 

                     (else 0)))).           (15) 

 
When the inlining occurs, the SP-Center5 generator 

pattern variable ?p is bound to “(p - 1)” and ?q is bound to 
“(q -  1)”. The “- 1” part of these values arise because of the 
C indexing design feature encapsulated earlier in the 
generation process. Recall that that design feature maps the 
domain language indexing system for neighborhoods (i.e.,   
[-n, +n] ) to a C language style of indexing   (i.e., [0, 2n]). 

VI. THE DSLGEN
TM

 PROTOTYPE 

DSLGen
TM

 is the culmination of a six year R&D effort 
and comprises about 52KLOC of CommonLisp and CLOS 
running on Franz Allegro, version 8.2. A key component of 
the architecture upon which many of the other components 
are built is a general pattern matching system with 
backtracking, which is built using continuations.  Built on 
top of the pattern matcher is a transformation system that 
includes several flavors of transformations (e.g., general, 
MTs, generic components, and deferred, which are used to 
move newly created subtrees up the abstract syntax tree). 
The transformations are generator phase specific (i.e., they 
are only enabled during named generator phases, e.g., the 
SyntheticDesign phase).  

The partial evaluator and several specialized inference 
subsystems are also heavy users of the pattern matcher. The 
inference systems include a type inference system, a 
backchaining rule system used for inferring PL based loops 
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from the logical loop constraints, a logical expression 
simplifier based on logical subsumption and an inequality 
inference engine based on Fourier-Motzkin elimination, 
which is used for inferring relationships among logical 
architecture elements (e.g., inferring that (i == ( m - 1) ) is 
false when (i == 0) and (m>1) are true) . 

As to generation times, the Sobel example on RGB 
images with partitioning but without load leveling or threads 
takes about 75 seconds to generate an Abstract Syntax Tree 
(AST) for C (or 40 to 50 seconds if not generating history 
and traces). Adding in the surface syntax to generate the text-
based C files adds an additional 15 to 20 seconds. Adding 
multicore with threads, SIMD and various other architectural 
complexities increases generation times by small, linear 
amounts. 

VII. PERFORMANCE TESTING 

Generated code was tested with a selection of 
implementation variations on a 4 core, 3.33 GHz Velocity 
brand computer with 12 GB of real and 24 GB of virtual 
memory. The computer is built on the Intel i7 CPU with 
Turbo mode, which allows overclocking when the CPU is 
running under maximum temperature and power 
specification. It has 8 virtual processors. The code was 
compiled with Microsoft’s Visual Studio 2008 C/C++ 
compiler.  

The test data was a 215 by 215 pixel image in RGB 
format with a 24 bit pixel depth. The chosen computations 
included Sobel and Wallis edge detection methods [27] since 
they put a greater computational load on the machine than 
other possible computations might. In addition, Sobel 
provides one of the more serious challenges to the generator 
in that it requires use of virtually all of the generation 
facilities. The testing also included image Average and 
Unsharp Mask [27] (often used to sharpen Mammogram 
images), both of which have lighter computational loads.  

     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 shows the results for various computations 
decomposed into threads to be run in parallel. These tests 
were run 10,000 times per image. For Sobel, the best 
performance was achieved at 55 threads, which required 
approximately 20.3 seconds to run the full set, or about 2 

milliseconds per image. The worst results were with two 
threads, one for the edge cases and one for the center, which 
required approximately 105 seconds for the 10,000 images or 
a bit over a 10 millisecond per image. This was roughly the 
same time required for the calibration case, a hand coded 
version compiled to use no parallelism of any kind. Notice 
that the time drops quickly with five threads (i.e., one for the 
edges and four for the image center), taking about 32.8 
seconds for the full set of images or about 3.3 milliseconds 
per image. This is about what simple logic would expect 
with four cores. However, the time continues to improve 
modestly for each five or so additional threads until it begins 
to level out at about 20.5 seconds at about 23 threads. 
Thereafter, the improvement is a tenth of a second or so for 
five or so additional threads. It is somewhat counter intuitive 
that one should get any improvement at all after the image 
has been evenly decomposed over the four cores. It is not 
entirely clear why this occurs but our current hypothesis is 
that it may be the “GPU effect” where many threads can 
mask memory, cache or other kind of latency if thread 
switching is efficient enough. Also, fast thread switching 
among virtual processors in the hardware (called 
Hyperthreading) may play a role. The target computer has 
two virtual processors per core and this is known to increase 
overall performance in many cases. 

Other test cases with different kinds of image processing 
functions show similar behavior although the computational 
loads vary based on the nature of the computation. Sobel and 
Wallis have computational heavy loads that just simply 
require hefty computational capacity. Sobel employs square 
roots and Wallis uses logarithms. On the other hand, 
Average and Unsharp Mask are both light weight 
computations that employ little more than addition and 
division. Hence, they require less computational capacity as 
is clear from the graph. 

With the addition of SIMD instructions, the added 
improvement ranges from about a 14% improvement for few 
or no threads to 36% for the maximum number of threads 
tested.  With only two threads, Sobel took 87.2 seconds for 
all 10K images or 8.7 milliseconds per image, whereas with 
55 threads, it took  12.87 seconds for all 10K images or 
about 1.3 milliseconds per image. 

VIII. RELATED RESEARCH 

A key difference between most previous research and 
DSLGen

TM
 is that DSLGen

TM
 starts working strictly in the 

problem domain and programming process domain rather 
than the PL domain. Virtually all previous research chooses 
representation systems that are based to some degree upon 
PL constructs or abstractions thereof. This includes 
compiling technology, generator technology [4] [5] [7] [21] 
[28] [29], computer aided software engineering (CASE) [13], 
model driven engineering [21], Aspect Oriented 
Programming (AOP) [17], Anticipatory Optimization 
Generation (AOG) [6] [7], general optimization based  
methods [1] [19] [16], parallel or specialty programming 
languages [8] [12], programming languages superficially 
similar to DSLGen

TM
‘s partitioning model [14], 

programming language augmentation systems [15] [26], 

 
 

Figure 5. Performance vs. thread count 
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maintenance support systems [1] [2], refactoring [18] and 
other related technology and methods for creating 
implementation code from a specification of a computation. 
This representational choice forces conventional generation 
technologies to introduce design and PL forms, 
implementation structures, organizational commitments and 
other execution platform based details too early and thereby 
make design decisions about the architecture of the solution 
that will prevent other desired design decisions from being 
made later. Or at least, it will make those other desired 
design decisions require revision of the model or design and 
often difficult to automate.  

In general, there are two important properties that 
differentiate these various approaches from DSLGen

TM
: 1) 

The specifications of the computations in these approaches 
are not invariant over a variety of execution platform 
architectures, and 2) target program implementations 
exploiting specific high capability features cannot be fully 
and automatically generated without compromising the 
invariance property. That is, user action is required either to 
revise the computational specification model to fit the new 
execution platform or to extend an overly abstract and 
therefore incomplete input specification to target a specific 
execution platform. Generation of target program 
implementations for a variety of execution platforms that 
exploit the execution platform features (e.g., multicore 
parallelism, vector instructions, etc.) requires human 
redesign or reprogramming in one form or another. For 
example, in these approaches, the transition from one 
execution architecture (e.g., simple Von Neumann) to 
another (e.g., multicore and/or vector machines) requires 
user action to adapt the computation specification or model 
to the new execution architecture.  

In many cases, these conventional technologies often 
force a top down, reductionist approach to design where the 
top level programming structure and the essence of its 
algorithm are expressed first and then the constituent essence 
is recursively extended step by step until the lowest level of 
PL details are expressed. However, that initial structure may 
be incompatible with some desired design requirements or 
features that are addressed later in the development or 
generation process. The initial design may have to be 
reorganized to introduce such design requirements or 
features. For example, the requirement to fully exploit a 
multicore computer requires a significant, difficult and many 
step reorganization to fully exploit the performance 
improvements possible with multicore. Automation of such 
reorganizations at the programming language level is 
seriously complicated and except for relatively simple cases 
is prone to failure. This is why compilers that can compile 
programs written and optimized for one execution platform 
are often unable to satisfactorily compile the same programs 
for a different execution platform with an architecture that 
employs a significantly different model for high capability 
execution and fully exploit the high capability features of the 
new architecture. For example, programs written for the pre-
2000 era Intel platforms are largely unable to be 
automatically translated to fully exploit the multicore 
parallelism of the more recent Intel platforms. Human based 

reprogramming is almost always necessary to fully exploit 
the multicore parallelism.  

While much research has been highly PL oriented, some 
research is clearly working in the problem domain. A prime 
example is the work of Jim Neighbors, who introduced the 
idea of using domain specific information in program 
generation. [23] [24] [25] His approach is to map from 
purely problem domain oriented languages through a series 
of language to language mappings, incrementally evolving to 
pure programming language representations. While 
DSLGen

TM
 is consistent with that spirit, the underlying 

machinery (e.g., the non-top-down design approach, the non-
PL logical architecture model, the APCs, the incremental 
design feature encapsulation and the incremental addition of 
sets of PL features phase by phase) distinguishes the 
DSLGen

TM
 approach from Neighbor’s work. Nevertheless, 

Neighbors’ work has made significant contributions to 
program generation from which this work has benefited.  

IX. CONTRIBUTIONS 

The contributions of this work are due in large part to the 
fact that this work breaks with convention in a number of 
ways. Perhaps the most important break is avoiding the PL 
domain in the initial modeling process. This allows the 
implementation neutrality of the INS and allows the 
separation of the INS from the specification of the 
execution platform (EXPS) while still allowing the 
generated programs to exploit the full range of high 
capability features of the EXPS. While some systems 
emphasize language neutrality [29] rather than 
implementation neutrality, their specifications clearly derive 
from the PL domain and they therefore inherit the liabilities 
of the PL domain.  

The ability of DSLGen
TM

 to exploit high capability 
features arises from another important contribution, 
specifically, the design representation system based on 
associative programming constraints. The design 
representation system allows the initial and early stage 
designs to be organized as logical architectures thereby 
allowing the system to operate in the problem and 
programming process domains and to introduce PL 
constructions and assumptions incrementally. Operating with 
problem domain concepts such as edge and center partitions 
allows DSLGen

TM
 to begin to manipulate and extend the LA 

without (initially) being restricted by the constraints inherent 
to programming languages. 

Organizing the IL definitions as provisional 
transformations that are malleable provides the opportunity 
for incrementally adding design features by using higher 
order transformations to revise the IL definitions to 
incorporate those features but still defer casting them into 
programming language constructs until late in the generation 
process. Thus, the IL becomes the stand-in or precursor 
representation for the code details that have yet to be 
concretely determined. For example, expressions like 
Partestx(sp) can stand-in for code or meta-information (e.g., 
assertions) that cannot be refined to concrete form until the 
implementation context (i.e., a specific partition) and locale 
(i.e., the location in the AST) are concretely and finally 
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determined. And when that context is eventually pinned 
down (e.g., to Edge1), Partestx(sp) can be specialized (e.g., 
to Partestx(sp-Edge1)), which will move it a step closer to 
refinement into a concrete logical expression. 

DSLGen
TM

 relies heavily on inference and implication. 
For example, the APCs are described by a set of logical 
assertions that are augmented as the design progresses. This 
allows architectural features and programming clichés to 
be expressed inferentially rather than structurally and 
proscriptively.  This defers making PL level design 
decisions. These PL representational forms are hard to 
revise, change and manipulate. For example, in DSLGen

TM
, 

adding messy design details and programming clichés can be 
deferred until the broad architectural structure is settled. 

In summary, DSLGen
TM

 represents a fundamentally new 
paradigm for program generation. 
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