

Copyright Software Generators, LLC, 2013

Never Reprogram Again
TM

Ted J. Biggerstaff

Software Generators, LLC

Austin, Texas USA

dslgen at softwaregenerators dot com

Abstract—DSLGenTM (Domain Specific Language Generator)

is a program generation system in which application programs

can be written in a domain specific language that is

independent of the execution platform architecture and yet can

be targeted to arbitrary existing and future execution

platforms in a way that exploits the performance or

computation improvement opportunities specific to those

platforms. This allows switching from one execution platform

to another without reprogramming the applications. The

generation of target programs is fully automatic and requires

no user input or action beyond the specification of the

computation and the separate specification of the features of

the target execution platform.

Keywords -- associative programming constraints, natural

and synthetic partitions, design patterns, logical and physical

architectures, design feature encapsulation, implementation

neutral specification, domain specific languages, inference,

problem domain inference, partial evaluation.

I. INTRODUCTION

DSLGen
TM

 (patents issued [8] [9] [10]) is a
transformation-based program generation system that fully
automatically generates a target implementation from two
independent specifications: 1) a domain specific,
Implementation Neutral Specification (INS) of the desired
computation and 2) a domain specific EXecution Platform
Specification (EXPS) that describes the features of the
execution platform upon which the application code will run.
The INS is invariant over target execution platform
architectures. That is, an application programmer can make
no predictions about the architecture of the target
implementation by looking at the INS alone. Thus, no
reprogramming of the INS is required to switch from one
platform to another. Only the EXPS features need to be
changed to switch from one architecture (e.g., multicore) to
another (e.g., vector machines). Importantly, DSLGen

TM

fully automatically converts an INS and an EXPS into target
implementation code that takes advantage of a broad range
of opportunities for high capability computations including
large grain parallelism (e.g., multicore CPUs), small grain
parallelism (e.g., instruction level parallelism or ILP), design
pattern frameworks and so forth. It is theoretically possible
to extend DSLGen

TM
’s capabilities to other target execution

platforms such as GPUs, Digital Signal Processors (DSPs),
specialized processors, Field Programmable Gate Arrays
(FPGAs), and API interfaces to layered implementations or
libraries. The author believes that DSLGen

TM
 can be

extended with new transform sets that will produce output
optimized for virtually any arbitrary existing or future

architecture. How can DSLGen
TM

 automatically produce
programs that are tailored to such highly varied execution
architectures?

The short answer is that DSLGen
TM

 is an extensible
generator that is designed to create a program design from
scratch based on the INS plus generalized constraints and
design features specified in the EXPS. In some sense, it is
doing what a human programmer does. DSLGen

TM

automatically builds a Logical Architecture (LA) that
constrains some problem domain oriented features of the
target program design but defers building a Physical
Architecture (PA) that commits to programming language
oriented features (e.g., routine architectures, parametric
connections, communication patterns and synchronization
patterns). That is, DSLGen

TM
 architects, designs, constrains,

reorganizes and optimizes the target program in the problem
and programming process domains rather than in the
programming language (PL) domain and only after the
macroscopic structure of the program is settled does it
generate PL code. In short, it designs the solution first and
codes it second.

Part of the secret to this process is that DSLGen
TM

eschews PL representations during the design and
architecture portion of the process thereby freeing it from the
highly restrictive constraints of PLs. PLs are solution
oriented not design or architecture oriented. They require the
programmer to tell how to do a computation whereas during
these early phases, the programmer knows what needs to be
done and what design features the solution will have (i.e., the
computational goals) but has not yet fully determined how to
implement and integrate the computational needs and
solution features.

II. THE PROBLEM

A key problem in exploiting the capabilities of various
existing and future execution platform architectures for a
specific target computation is the conflict between the goal
of precisely describing the implementation of a target
computation and the goal of casting the implementation into
a variety of forms each of which exploits a different set of
high capability features of some specific execution platform
architecture (e.g., parallel processing via multicore based
threads). The key culprit in this conflict is the representation
system used in the course of creating a target program – that
is, the use of programming language based abstractions to
represent the evolving program at each stage of its
development. Einstein said “We see what our languages
allow us to see.” And when a computer scientist understands
his or her world in terms of programming languages, it is
natural to construct intermediate design and precursor

Copyright Software Generators, LLC, 2013

representations in terms of programming language based
abstractions. This has led to our conventional, reductionist,
top-down models of program design and development,
which the author believes has been a key impediment to
mapping an implementation neutral specification of a
computation to an arbitrary platform while still exploiting
whatever high capability features that platform possesses.

In such a top-down model, the structure and some details
of a layer of the target program are specified along with
some abstract representation of the constituent elements (i.e.,
lower level layers) of that layer. In human based application
of top-down design, the abstract elements of the lower level
layers are often expressed in terms of an informal pseudo-
code. In the automated versions of top-down design, the
pseudo-code is often replaced by formal expressions (i.e.,
programming language based expressions) of the interfaces
to the lower level layers, which may be simple PL calls,
object oriented invocations, or skeletal forms of elements
that remain to be defined. Alternatively, these interfaces may
be calls or invocations to fully defined API layers or
interfaces to message based protocols (e.g., finite state
machine specifications). In any case, the structure is fixed at
a high level before the implications of that structure become
manifest in a lower level, later in the development process.
Refinements within the lower layers often require changing
or revising the structure at a higher level, which can be
problematic. Further, in an automated system, distinct
programming design goals will be, by necessity, handled at
different times. This is further complicated by the fact that
multiple design goals may be inconsistent (at some level of
detail) or at least, they may be difficult to harmonize.

A good example of this kind of difficulty is trying to
design a program to exploit thread based parallel
implementation. The exact structure and details of the final
program are subtly affected by a myriad of possible problem
features and programming goals. A threaded implementation
will require some thread synchronization logic which may be
spread across a number of yet to be defined routines. The
computation will have to be partitioned into parts that are
largely determined by the specifics of the target computation.
These partitions will be mapped into routines and threads
(e.g., some lightweight computations batched in one thread
and other heavyweight computations decomposed into slices
with their own threads). The thread protocol will introduce
low level implementation details that potentially will have to
be harmonized across a number of routines. The parameter
choices for these routines (i.e., the plumbing) may be
involved in the communication design for these thread
routines and will be constrained by low level implementation
details of the thread protocol. In DSLGen

TM
, such

programming language level routine structures, routine inter-
communication decisions, thread protocol restrictions and
thread library implementation requirements are added into
the architecture close to the end of the design process.

If an automated generator tries to handle all of these
design issues at once, there is an overwhelming explosion of
cases to deal with and the approach quickly becomes
infeasible.

III. THE SOLUTION

The ideal solution would be to recognize design goals
and assert the programming process objectives provisionally
(e.g., organize the computation to exploit threads) without
committing fully and early-on to constructing the PL
structures and details, because those PL structures and details
are likely to change and evolve as the target program is
refined toward a final implementation. The ideal solution
would allow each design issue or feature to be handled
atomically, one at a time. Then, if necessary, those
previously asserted provisional commitments could be
altered before they are cast into concrete code. And this is
the essence of DSLGen

TM
.

DSLGen
TM

 allows the construction of a logical
architecture that levies minimal constraints on the evolving
program and explicitly defers generating programming
language expressions early on. That is, initially the LA will
constrain only the decomposition of a computation into its
major (and natural) organizational divisions (which are
called natural partitions) omitting any PL details of the
programming routine structure or PL details of those major
organizational divisions. There is no information on control
structure, routines, functions, threads, parametric
connections, data flow connections, machine units,
instruction styles, parallel synchronization structures and so
forth. All of that is deferred and added step by step as the
generation process proceeds. In fact, the LA will be revised
and evolved step by step by the encapsulation of individual
design features, each of which will further constrain the final
expression of the target program.

A. Associative Programming Constraints and the LA

DSLGen
TM

 builds the LA out of a new kind of
representation element – an Associative Programming
Constraint (APC). APCs are partial and provisional
constraints on the target computation. They do not fully
determine the target implementation. These APCs come in
two major varieties: Iteration constraints and partition
constraints. For example, a loop constraint (a subclass of
iteration constraint) might specify “i” and “j” to be indexes
of a matrix “a” that have ranges of [0,(m-1)] and [0,(n-1)],
respectively. And related to this loop constraint, for example,
might be a partition constraint (e.g., Edge1) that specifies the
subdivision of that loop constraint for which (i==0). Nothing
more about the implementation is determined by these
constraints.

Operationally, APCs are CommonLisp Object System
(CLOS) objects that are associated with elements of the INS
and initially arise via translation of the INS. They are logical
in the sense that their essential specification mechanism is
based on predicate logic assertions. These assertions will be
altered and extended as the generation process proceeds
thereby altering and refining the definitions of the
constraints. APCs are propagated over the INS structure
(somewhat analogous to APL’s method of loop introduction
and placement). They are combined in several ways, the
operational effect of which is to merge equivalent iterations
or to adapt two slightly different computational cases to a
single interation scheme. They can be split in two,

Copyright Software Generators, LLC, 2013

reorganized into groups that imply future design features and
revised to incorporate one or more design features. Not until
later are they actually applied, decomposing the INS into
specialized subdivisions of the implementation, which
creates the precursors to actual code.

Specialize versions of these two major classes of APCs
may be created by subclassing, thereby allowing other kinds
of architectural factorings. To provide a concrete context in
which to discuss the LA and its representational elements,
we will introduce a problem domain and a domain specific
language for that problem domain.

IV. THE PROBLEM DOMAIN AND AN EXAMPLE PROBLEM

The initial problem domain treated by DSLGen
TM

 is
digital signal processing (DSP) and includes problems that
range from signal and image processing to neural networks
to pattern recognition plus a rich set of related problems. The
domain specific language used to express the INS is based
on the Image Algebra (IA) [27].

As an example computation, we develop a program that
performs Sobel edge detection on a grayscale image (i.e.,
where the pixels are shades of gray). Such a program would
take, for example, the image “a” in Fig. 1 as input and
produce the image “b” in Fig.2 as output. The output image
has been processed so as to enhance (line) edges of items in
the image by the Sobel edge detection method.

Each black and white pixel b[i,j] in the output image “b”
is computed from an expression involving the sum of
products of pixels in a neighborhood (e.g., sp, of type
iatemplate) surrounding the a[i,j] pixel and the coefficients
defined by that neighborhood (e.g., sp). This is called a
convolution of a matrix with a template (or neighborhood).

In the IA, a convolution is designated by the ⊕ operator, e.g.,

(a ⊕ sp). In the following examples, s and sp will designate
instances of the class iatemplate. Mathematically, the Sobel
computation is defined as

{Foralli,j (bi,j : bi,j = sqrt((∑p, q (w(s)p , q * a i+p , j+q)

2
 +

 ∑p, q (w(sp)p , q * a i+p , j+q)
2
)} (1)

where i and j are indexes that range over the matrices a and
b; p and q are indexes that range over the iatemplate
neighborhoods s and sp; and the coefficients of the
neighborhood (which are also called weights) are defined by
the function “w”. For Sobel edge detection, the weights are
all defined to be 0 if the center pixel of the neighborhood
corresponds to an edge pixel in the image (i.e., w(s) = 0 and
w(sp) = 0), and if not an edge pixel, they are defined by the s
and sp neighborhoods shown in (2). It is convenient to index
the neighborhoods in the DSL from -1 to +1 for both
dimensions so that the current pixel being processed is at
(0, 0) of the neighborhood.

48476
Q

101

121

000

121

1

0

1

P)(

−

 −−−

−

=sw

48476
Q

101

101

202

101

1

0

1

P)(

−

−

−

−

−

=spw

(2)

Since an implementation of this computation for a
parallel computer may not be organized like the
mathematical formula, it is useful to represent this
specification more abstractly because such abstractions can
defer the implementation and organization decisions and
thereby allow the computation (i.e., what is to be computed)
to be specified completely separately and somewhat
independently from the implementation form (i.e., how it is
to be computed). Thus, the abstract computation
specification is independent of the architecture of the
machine that will eventually be chosen to run the code.
Choosing a different machine architecture for the
implementation form without making any changes to the
specification of the computation (i.e., the what), will
automatically generate a different implementation form that
is tailored to the new machine’s architecture. More to the
point, porting from one kind of machine architecture (e.g.,
machines with instruction level parallelism like Intel’s SSE
instructions) to a different kind of machine architecture (e.g.,
machines with large grain parallelism such as multi-core
CPUs) can be done automatically by only making trivial
changes to the machine specifications and no changes to the
computation specification (i.e., the what). The publication
form in [27] for the Sobel Edge detection mathematical
formula (1) is based on the Image Algebra domain specific
language (DSL). Re-expressing the formula (1) in the Image
Algebra gives a first cut at the INS for the Sobel example:

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
 (3a)

 Of course, the INS will need some declarations for a, b,

s, sp, etc.:

(DSDeclare IATemplate s :form (array (-1 1) (-1 1))
:of DSNumber)

(DSDeclare IATemplate sp :form (array (-1 1) (-1 1))
:of DSNumber)

(DSDeclare DSNumber m :facts ((> m 1)))
(DSDeclare DSNumber n :facts ((> n 1)))
(DSDeclare BWImage a :form (array m n) :of BWPixel)
(DSDeclare BWImage b :form (array m n) :of BWPixel)

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
 (3b)

m and n are assumed to be user defined. The DSL type

declarations (e.g., IATemplate, BWImage, etc.) define
CLOS types that will eventually refine to C types. The
“:facts” keyword denotes a conjunction (i.e., list) of facts
pertinent to the declared item (e.g., m) and will be used to
infer, for example, that“(i==(m-1))” is false when “(i==0)” is
true. Beyond (3b), we will also need some definitions for s

and sp equivalent to (2) and for ⊕, all to be defined later.
This DSL is the basis of the Implementation Neutral

Specification (INS) in the examples used throughout the
remainder of this document. A full description of the IA used
by DSLGen

TM
 is beyond the scope of this paper (see [27])

but a few comments are in order. The IA is much like APL
in the sense that IA specifications eschew the use of explicit
looping constructs allowing loops to be implied by IA

Copyright Software Generators, LLC, 2013

operators and data structures. The generator will introduce
implied loops as constraints and, through the manipulation,
combination and propagation of these constraints, will
determine the relationships between IA expressions and
loops. The initial form of the LA arises during this process.

In DSLGen

TM
, the Image Algebra is adapted to a more

utilitarian, LISP based syntax with prefix operators, without

the pretty symbols (e.g., the convolution operator ⊕ becomes
a Lisp symbol), and with the w functions in (1) becoming so-
called Method-Transforms (MT), which rewrite Abstract
Syntax Tree (AST) subtrees. MTs look superficially a bit like
object oriented methods with a pattern (i.e., the MT’s left
hand side or lhs) as the analog of a method’s parameter
sequence and a pure functional expression right hand side
(rhs) as the analog of a method’s body. MTs will be an
important component of the intermediate language (IL) by
which provisional but malleable definitions are expressed.
For example, w of the neighborhood s is an MT expressed
as:

(Defcomponent w (sp #. ArrayReference ?p ?q)
 (if (or (== ?i ?ilow) (== ?j ?jlow)
 (== ?i ?ihigh) (== ?j ?jhigh)
 (tags (constraints partitionmatrixtest edge)))
 (then 0)
 (else (if (and (!= ?p 0) (!= ?q 0))
 (then ?q)
 (else (if (and (== ?p 0) (!= ?q 0))
 (then (* 2 ?q))
 (else 0))))))) (4)

where ArrayReference is the name of a shared pattern that
will recognize an array reference in an AST (e.g., a[i,j]) and
bind the loop index variables (e.g., i and j) to the pattern
variables ?i and ?j, the matrix name a to ?a and the
expressions defining the upper and lower ranges of those
loop indexes to ?ihigh, ?ilow, etc. The remainder of the lhs
pattern after ArrayReference will bind ?p and ?q to the loop
index names used by the inner convolution loops over the
neighborhood designated by sp.

The “tags” expression designates a property list for the
OR conditional expression, which in (4) provides the user
supplied domain knowledge that the OR expression is a
partitioning condition for this computation that will identify
edge partitions and by implication, a non-edge (i.e., center)
partition. Problem domain concepts like “edge” and “center”
play a key role in the logical architecture for the target
computation and beyond that, in imposing design pattern
frameworks onto a logical architecture. Heuristic rules based
on domain concepts are the mechanisms whereby
DSLGen

TM
 chooses a design pattern framework to introduce

PL structures and clichés (e.g., coordinated routines,
synchronization patterns and thread management clichés)
and maps the LA into the structures and clichés of that
design pattern framework.

The opportunity for such domain specific heuristic rules

is open ended, especially given the rich variety of possible
semantic subclasses of partitions. Different problem
examples may introduce other domain semantics. For
example, in the matrix domain, the semantic subclasses
include corners (e.g., corners are special cases in partitioning
image averaging computations); non-corner edges also used
in image averaging; upper and lower triangular matrices,
which are used in various matrix algorithms; diagonal
matrices; and so forth. By contrast, in the data structure
domain, domain subclasses include trees, left and right
subtrees, red and black nodes, etc. In general, domain
concepts drive the DSLGen

TM
 program generation process.

V. THE DESIGN REPRESENTATION SYSTEM

The first iteration of the logical architecture for the Sobel
example is shown conceptually in Figure 3. Loop constraints
are CLOS objects that keep track of loop indexes, loop
nesting and the logical description of the loop, which
comprises logical assertions and precursors thereof. For
example, Partestx of s is IL manufactured during INS
reduction. It is a precursor to a logical assertion that will
refine to a partitioning condition for some (not yet decided
upon) partition. Partestx of s will eventually be refined to a
concrete expression such as “(i==0)” in the context of a

Figure 1. Input Image a

Figure 2. Output Image b

Copyright Software Generators, LLC, 2013

particular partition-based computation (e.g., Edge1). And the
addition of “(i==0)” to the loop constraint will change the
form of the C code that is eventually generated for that
partition by causing the loop over “i” to evaporate and
possibly allowing the body of the loop to be simplified. In
the chosen example, the bodies of edge loops undergo
significant simplification.

Operationally, Partestx is a closure over one of the
disjuncts (e.g., (== ?i ?ilow)) in the OR expression in (4)
and the translation context bindings (e.g., ((?i i) (?ilow 0)) at
the time of Partestx formation. That translation time will be

when an expression like “(a ⊕ s)” is being translated and a
provisional loop constraint is being introduced and

propagated to the “⊕” level expression. As loop constraints
are introduced, propagated and combined (e.g., providing
loop sharing for separate computations), DSLGen

TM

provides machinery for recording design decisions (e.g.,
discarding unneeded loop indexes) via dynamically
generated transformations that will be applied periodically to
synchronize the overall design.

The loop constraint is associated with a partially
translated INS expression (by appearing on the INS’s tags
list). Generally speaking, the loop constraint may be
associated with a set of partitioning constraints such as the
Edge1, Edge2, Edge3, Edge4 and Center5 (i.e., the CLOS
objects) of this example. They indicate a partial and
provisional decomposition of the loop, where each
decomposition body eventually will be formed from a cloned
and specialized version of the associated INS expression. But
DSLGen

TM
 does not perform the decomposition yet, because

as the implementation design evolves, the partitioning is
almost certain to change before it is cast into code. The

partitioning implied by the set of partition objects is sort of a
“to do” list and a “to do” list that will likely change before it
is turned into code. However, this future cloning and
specialization will be accomplished by using a set of newly
formed specializations of s, sp and their IL. For example, the
specialization of a specific neighborhood (e.g., sp) and its IL
(e.g., w) for a specific partition constraint (e.g., edge1) is
formed by assuming a truth value for the partitioning
condition of the partition constraint and partially evaluating
the IL definitions under that assumption. For example, for
Edge1, the MT definition of w of sp, in (4), would partially
evaluate to a new MT definition, w of sp-edge1:

 (Defcomponent w (sp-edge1 #.ArrayReference ?p ?q) 0) (5)

The LA is malleable so that DSLGen
TM

 can
incrementally introduce design features by a process called
Design Feature Encapsulation (DFE). DFE will revise IL
definitions, extend and reorganize partition sets and
occasionally even revise some of the DSLGen

TM
’s own

transformations that define the overall generation and
programming process (e.g., when introducing instruction
level parallelism).

A. Design Feature Encapsulation

For our example, let us use an EXPS of “((PL C) Mcore
(Threads MS) (LoadLevel (SliceSize 5)))” where C is the
output language, the target is a multicore machine that
exploits threaded parallelism using Microsoft’s thread library
and the design should decompose the computation by slicing
up some unspecified heavyweight computation using 5
unspecified units per slice. In the example, the LA specifics
will be used to disambiguate what is being sliced up (e.g.,
Center5) and what the units are (e.g., matrix rows).

In figure 3, we have already seen a simple example of
DFE where IL definitions are specialized to specific logical
partitions of a target computation. These specializations will
cause computations along the matrix edges to simplify to a
single loop that assigns 0 to pixels of that edge. Another
simple example of DFE is mapping from IA neighborhood
style indexing to C style indexing. IA style indexing ranges
from –n to +n for an (2n+1) by (2n+1) neighborhood so that
the center pixel is at (0,0). In contrast, the C language (i.e.,
the chosen output language) ranges from 0 to 2n. The
indexing DFE is accomplished by algebraic manipulation of
the right hand side (i.e., the MT body) of IL involving
neighborhood loop indexes, which relocates instances of
those loop indexes appropriately.

However, one of the most powerful examples of DFE is
the introduction of architectural design features that alter the
form of and relationships within the implementation across a
broad set of coordinated routines, data structures and
possibly even parallel processes. This is accomplished by the
use of synthetic partitions, which extend the notion of natural
partitions by adding implied design feature constraints.

1) Synthetic Partitions

In DSLGen
TM

, the generation process is divided into
named phases, each of which has a narrowly defined

w
Partestx
row
col
….

Edge2

Set of Partitions

Edge4

Center5

Partially Translated INS Expression:

b [i,j]= [(a[i,j] s[i,j])
2
+ (a[i,j] sp[i,j])

2
]
1/2

Loop Constraint:
(forall (i j) { 0<= i<=(m-1), 0<=j<=(n-1), Partestx(S)}

Specializations
Of

Neighbothoods
S and SP:

S-Edge1
Sp-Edge1
S-Edge2
Sp-Edge2
S-Edge3
Sp-Edge3
S-Edge4
Sp-Edge4
S-Center5
Sp-Center5

Convolution

Neighborhoods

Intermediate

Language

Figure 3. Initial logical architecture of example

Copyright Software Generators, LLC, 2013

generation purpose. The phase most relevant to the
introduction of wide ranging design features is the Synthetic-
Partitioning phase. During the SyntheticPartitioning phase,
the generator introduces design features (via synthetic
partition objects) that will constrain the evolving LA to be
much more specific to a design for some execution platform.
These synthetic partitions imply implementation structures
that exploit high capability features of the execution platform
and that, when finally re-expressed in a form closer to code,
may have wide ranging and coordinated affect across much
of the LA (e.g., via multiple routines that coordinate the use
of multicore parallel computation). The SyntheticPartitioning
phase operates on the logical architecture to reorganize the
partitions and probably (depending on the execution platform
spec) create synthetic partitions that connect to one or more
code frameworks. These code frameworks hold the
implementation details (e.g., thread and synchronization
management) to be integrated into the evolving target
program. The synthesis process for this example includes the
following detailed steps.

Let us say that the EXPS requires that the computation

should be load leveled (i.e., sliced into smaller computational
pieces) in anticipation of formulating the computation to run
in parallel threads on a multicore platform, which we have
also included in the EXPS. Given these assumptions, Fig. 4
shows the revised logical architecture for these assumptions
(with synthetic partitions denoted by dashed boxes). Load
leveling will introduce two synthetic partitions (e.g.,
Center5-KSegs and Center5-ASeg) that respectively express
the design feature that decomposes the center partition (i.e.,

Center5) into smaller pieces and the design feature that
processes each of those smaller pieces.

Simultaneously, in Fig. 4, the loop constraint from Fig. 3,
is reformulated into two loop constraints (i.e., Slicer and
ASlice) that will be required by the synthetic partitions
Center5-KSegs and Center5-ASeg. This synthesis process
also introduces versions of the neighborhoods S-Center5 and
SP-Center5 specialized for Center5-Ksegs and Center5-Aseg
and generates specialized IL for each. The step size of the
Slicer loop is inferred from information in the EXPS or by a
default if the EXPS is silent on the subject. It is represented
by the IL expression “Rstep(S-Center5-Ksegs)” in Fig. 4.
For the example, we have chosen a step size of 5. Using this
step size, Slicer will dynamically compute a new range for
each instance of the ASlice loop.

2) Imposing Design Patterns on a Logical Architecture

Now, DSLGen
TM

 is ready to add in the PL level details
(e.g., sets of interrelated routines, parametric plumbing,
thread management clichés and protocols of specific thread
libraries) by mapping the LA into a PA through use of a
design pattern framework. To make the example interesting,
we have assumed a design with thread-based multicore
parallelism (in the EXPS).

DSLGen
TM

 allows for a library of design pattern based
frameworks (i.e., objects with associated PL-like skeletons),
each of which represents some reasonably small combination
of related design features. Additionally, each such
framework has a set of holes (indicated by embolden
designators) that are tailored to the LA’s combination of
architectural features. These holes are designed to receive
computational payloads from the LA (e.g., partition specific
computations). For example, a particular framework might
be designed to receive partitions such as image edges that are
“probably” order n computations (i.e., lightweight
computations) as well as to receive partitions such as image
centers that are “probably” order n squared computations
(i.e., heavyweight computations). Such a framework might
introduce a set of cooperating PL routines and the parametric
plumbing among those routines, where the plumbing may
include some “holes” that will receive data items specific to
the INS. There may be additional PL design features
included, such as synchronization patterns for parallel
computation and detailed thread control clichés. But the
framework is agnostic about its payload. It says nothing
about exactly what kind of a computation is occurring in its
holes. That computational payload information will be
supplied by the logical architecture.

So, based on the example LA plus specific features
required by the EXPS, DSLGen

TM
 will search its design

pattern data base for a design pattern meeting these criteria.
It finds one with the following skeletal PL framework:

void ?managethreads ()
 { HANDLE threadPtrs[200];
 HANDLE handle;
 /* Launch the thread for lightweight processes. */
 handle = (HANDLE)_beginthread(
 &?DoOrderNCases , 0, (void*) 0);

Figure 4. Revised logical architecture of example

Copyright Software Generators, LLC, 2013

 DuplicateHandle(GetCurrentProcess(), handle,
 GetCurrentProcess(),&threadPtrs[0],
 0, FALSE, DUPLICATE_SAME_ACCESS);
 /* Launch the threads for the slices of heavyweight
 processes. */
 {handle = (HANDLE)_beginthread(& ?DoASlice , 0,
 (int) (Idex ?SlicerConstraint)) ;

 DuplicateHandle(GetCurrentProcess(), handle,
 GetCurrentProcess(),&threadPtrs[tc],

 0, FALSE, DUPLICATE_SAME_ACCESS);
 tc++; } (tags (constaints ?SlicerConstraint))
 long result = WaitForMultipleObjects(tc, threadPtrs,
 true, INFINITE); } (6)

void ?DoASlice (int (Idex ?SlicerConstraint))
 {{ ?ins } (tags (constraints ?ASliceConstraint))
 _endthread(); } (7)

 void ?DoOrderNCases ()
 {?OrderNCases
 _endthread(); } (8)

Associated with the class of this design pattern is a

CLOS method whose job is to find key elements in the LA
and bind them to pattern variables (e.g., ?ins and
?SlicerConstraint); invent and bind unique names for
routines (e.g., “SobelCenter8” might be invented for
?managethreads); clone and specialize the INS to specific
partitions (e.g., by substituting sp-Edge1 for sp); and
instantiate the skeletons with the bindings. Notice that the
design skeletons are agnostic as to what their computational
payload is going to be. Further, there are no PL like
connections (e.g., calls to PL routines) between the design
pattern skeletons and anything in the LA. The only
requirements of the design pattern are that the LA has
partitions that represent lightweight processes that can be
batched in a single thread (e.g., edges) and a heavyweight
process (e.g., a center) that is partitioned into a slicer
partition and an implied set of slicee partitions. These
requirements are determined by domain logic, that is, logical
rules operating on problem domain information (e.g.,
properties of edges) rather than PL information.

Space limitations preclude showing the full step by step
expansion of all these skeletal routines but the thread routine
that batches the edge partitions (?DoOrderNCases) is
reasonably short and is interesting in that the edge loops will
drastically simplify when in-lined and partially evaluated.
Instantiating with cloning and specialization produces:

void SobelEdges9()
 { /* Edge1 partitioning condition is (i=0) */
 {for (int j=0; j<=(n-1);++j)

 b [0,j]= [(a[0,j] ⊕ s-edge1[0,j])
2
 +

 (a[0,j] ⊕ sp-edge1[0,j])
2
]

1/2
}

 /* Edge2 partitioning condition is (j=0) */
 {for (int i=0; i<=(m-1);++i)

 b [i,0]= [(a[i,0] ⊕ s-edge2[i,0])
2
 +

 (a[i,0] ⊕ sp-edge2[i,0])
2
]

1/2
}

 /* Edge3 partitioning condition is (i=(m-1)) */
 {for (int j=0; j<=(n-1);++j)

 b [(m-1),j]= [(a[(m-1),j] ⊕ s-edge3[(m-1),j])
2
 +

 (a[(m-1),j] ⊕ sp-edge3[(m-1),j])
2
]

1/2
}

 /* Edge4 partitioning condition is (i=(n-1)) */
 {for (int i=0; i<=(m-1);++i)

 b [i, (n-1)]= [(a[i, (n-1)] ⊕ s-edge4[i, (n-1)])
2
 +

 (a[i, (n-1)] ⊕ sp-edge4[i, (n-1)])
2
]

1/2
}

 _endthread(); } (9)

Notice that in (9) partial evaluation plus inference has

caused one of each pair of the edge loops in (9) to evaporate
and zeros appear in one of the index positions in the array
expressions. In truth, these loop refinements occur
concurrently with the inlining of the IL definitions (see the
following section) but in the name of space, showing it here
shortens (9) and makes them easier for the reader to
understand.

While the expansion of the ?DoASlice routine is longer
than SobelEdges9, it is important because is shows the
default partition specialization (i.e., the center slice
partition). It is populated with the Aslice loop constraint plus
the INS specialized to S-Center5-ASeg and SP-Center5-
ASeg. The example code is shown with a slice size of 5 but
alternatively, it could be declared by the user to be a
parameter. Before inlining the IL definitions, the ?DoASlice
routine is specialized to:

void SobelCenterSlice10 (int h)

 {

 for (int i=h; i<= min((h+ 4),(m-1)); ++i)

 {for (int j=1; j<=(n-2); ++j)

 {b [i,j]= [(a[i,j] ⊕ s-center5-Aseg[i,j])
2
 +

 (a[i,j] ⊕ sp-center5-ASeg[i,j])
2
]

1/2
 } }

 _endthread(); } (10)

Like (9), form (10) shows the loop refinements out of

order to save space and make (10) easier to understand. The
range of j is now [1,(n-2)] rather than [0,(n-1)] because of the
effect of the partitioning condition.

3) Inlining Intermediate Language Definitions

The DSLGen
TM

 Inlining phase will inline the IL
definitions, replacing the convolution expressions with their
definitions such as that of the convolution operator, i.e.,

(* (a[(row sp-Edge1 a[i,j] p q), (col sp-Edge1 a[i,j] p q)])
 (w sp-Edge1 a[i,j] p q))

2
 (11)

for each partition specific INS clone. The inlining will
continue recursively for the lower level IL definitions, e.g.,
row, col and w (where row and col map from neighborhood
coordinates to matrix coordinates). Since (w sp-Edge1 a[i,j]
p q) is defined as 0 in (5), expression (11) partially evaluates
to 0. Similarly, all other convolution expressions involving
edges partially evaluate to 0. After all of the inlining and
partial evaluation (but before adding local declarations),
expression (9) becomes (12):

Copyright Software Generators, LLC, 2013

void Sobel Edges9()
 { /* Edge1 partitioning condition is (i=0) */
 {for (int j=0; j<=(n-1);++j) b [0,j]=0;}
 /* Edge2 partitioning condition is (j=0) */
 {for (int i=0; i<=(m-1);++i) b [i,0]= b [0,j]=0;}
 /* Edge3 partitioning condition is (i=(m-1)) */
 {for (int j=0; j<=(n-1);++j) b [(m-1),j]=0;}
 /* Edge4 partitioning condition is (i=(n-1)) */
 {for (int i=0; i<=(m-1);++i) b [i, (n-1)]= 0;}
 _endthread(); } (12)

And analogously for the ?DoASlice routine, after a series

of inlining steps analogous to the Edge1 partition refinement
process but without the extensive simplification engendered
by the IL definitions for the edge partitions, the center slice
partition case (10) refines into:

void SobelCenterSlice10 (int h)

{long ANS45; long ANS46;
 /* Center5-KSegs partitioning condition is
 (and (not (i=0)) (not (j=0)) (not (i=(m-1)))
 (not (j=(n-1)))) */
 /* Center5-ASeg partitioning condition is
 (and (not (i=0)) (not (j=0)) (not (i=(m-1)))
 (not (j=(n-1))) (h<=i) (i<=(min (h+4) (m-1)))*/
 for (int i=h; i<=min((h+ 4),(m-1)); ++i) {
 for (int j=1; j<=(n-2); ++j) {
 ANS45 = 0;
 ANS46 = 0;
 for (int p=0; p<=2; ++p) {
 for (int q=0; q<=2; ++q) {

 ANS45 +=
 (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))*
 ((((p - 1) != 0) && ((q - 1) != 0)) ? (p - 1):

 ((((p - 1) != 0) && ((q - 1) == 0)) ?
 (2 * (p - 1)): 0)));
 ANS46 +=
 (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))*

 ((((p - 1) != 0) && ((q - 1) != 0)) ? (q - 1):
 ((((p - 1) == 0) && ((q - 1) != 0)) ?

 (2 * (q - 1)): 0))); }}
 int i1 = ISQRT ((pow ((ANS46), 2) +

 pow ((ANS45), 2)));
 i1 = (i1 < 0) ? 0 : ((i1 > 0xFFFF) ? 0xFFFF : i1);
 ((*((*(A + (i))) + j))) = (BWPIXEL) i1; }}
 _endthread(); } (13)

The examples are adapted from generated code to

accommodate the format and space available. For example,
in generated code, i and j would be generated names like
idx3 and idx4. Similarly, p and q would be something like
p15 and q16. Additionally, in (13), a discussion of the
introduction of the answer variables (e.g., ANS45) and the
masking expression near the end is beyond the scope of this
paper.

The reader will note that the inlining step has introduced
some common sub-expressions (e.g., (p - 1)) which will
degrade the overall performance if not removed. If this code

is targeted to a good optimizing compiler, these common
sub-expressions will be removed by that compiler and
thereby the performance improved. However, if the target
compiler is not able to perform this task, DSLGen

TM
 offers

the option of having the generator system remove the
common sub-expressions and this can be easily added to the
specification of the execution platform. However, the
common sub-expressions are explicitly included in this
example (i.e., not optimized away) to make the connection to
the structures of the MTs used by the INS more obvious to
the reader. The broad structure of the right hand operand of
the times (*) operator in the right hand side of the
assignments to the answer variables ANS45 and ANS46 is
structurally the same as that of the W method transform
specialized to the center partition for SP and S. That is, the
right hand side of the C form:

((((*((*(b + ((i + (p + -1))))) + (j + (q + -1))))) *

 ((((p - 1) != 0) && ((q - 1) != 0)) ? (q - 1):

 ((((p - 1) == 0) && ((q - 1) != 0)) ? (2 * (q - 1)): 0))) (14)

mimics the form of the MT definition for w of SP-Center5
because (14) is derived by inlining that MT definition and
eventually processing it into legal C. For reference, the rhs
of the MT definition of w of SP-Center5 has the form

(if (and (!= ?p 0) (!= ?q 0))

 (then ?q)

 (else (if (and (== ?p 0) (!= ?q 0))

 (then (* 2 ?q))

 (else 0)))). (15)

When the inlining occurs, the SP-Center5 generator

pattern variable ?p is bound to “(p - 1)” and ?q is bound to
“(q - 1)”. The “- 1” part of these values arise because of the
C indexing design feature encapsulated earlier in the
generation process. Recall that that design feature maps the
domain language indexing system for neighborhoods (i.e.,
[-n, +n]) to a C language style of indexing (i.e., [0, 2n]).

VI. THE DSLGEN
TM

 PROTOTYPE

DSLGen
TM

 is the culmination of a six year R&D effort
and comprises about 52KLOC of CommonLisp and CLOS
running on Franz Allegro, version 8.2. A key component of
the architecture upon which many of the other components
are built is a general pattern matching system with
backtracking, which is built using continuations. Built on
top of the pattern matcher is a transformation system that
includes several flavors of transformations (e.g., general,
MTs, generic components, and deferred, which are used to
move newly created subtrees up the abstract syntax tree).
The transformations are generator phase specific (i.e., they
are only enabled during named generator phases, e.g., the
SyntheticDesign phase).

The partial evaluator and several specialized inference
subsystems are also heavy users of the pattern matcher. The
inference systems include a type inference system, a
backchaining rule system used for inferring PL based loops

Copyright Software Generators, LLC, 2013

from the logical loop constraints, a logical expression
simplifier based on logical subsumption and an inequality
inference engine based on Fourier-Motzkin elimination,
which is used for inferring relationships among logical
architecture elements (e.g., inferring that (i == (m - 1)) is
false when (i == 0) and (m>1) are true) .

As to generation times, the Sobel example on RGB
images with partitioning but without load leveling or threads
takes about 75 seconds to generate an Abstract Syntax Tree
(AST) for C (or 40 to 50 seconds if not generating history
and traces). Adding in the surface syntax to generate the text-
based C files adds an additional 15 to 20 seconds. Adding
multicore with threads, SIMD and various other architectural
complexities increases generation times by small, linear
amounts.

VII. PERFORMANCE TESTING

Generated code was tested with a selection of
implementation variations on a 4 core, 3.33 GHz Velocity
brand computer with 12 GB of real and 24 GB of virtual
memory. The computer is built on the Intel i7 CPU with
Turbo mode, which allows overclocking when the CPU is
running under maximum temperature and power
specification. It has 8 virtual processors. The code was
compiled with Microsoft’s Visual Studio 2008 C/C++
compiler.

The test data was a 215 by 215 pixel image in RGB
format with a 24 bit pixel depth. The chosen computations
included Sobel and Wallis edge detection methods [27] since
they put a greater computational load on the machine than
other possible computations might. In addition, Sobel
provides one of the more serious challenges to the generator
in that it requires use of virtually all of the generation
facilities. The testing also included image Average and
Unsharp Mask [27] (often used to sharpen Mammogram
images), both of which have lighter computational loads.

Figure 5 shows the results for various computations
decomposed into threads to be run in parallel. These tests
were run 10,000 times per image. For Sobel, the best
performance was achieved at 55 threads, which required
approximately 20.3 seconds to run the full set, or about 2

milliseconds per image. The worst results were with two
threads, one for the edge cases and one for the center, which
required approximately 105 seconds for the 10,000 images or
a bit over a 10 millisecond per image. This was roughly the
same time required for the calibration case, a hand coded
version compiled to use no parallelism of any kind. Notice
that the time drops quickly with five threads (i.e., one for the
edges and four for the image center), taking about 32.8
seconds for the full set of images or about 3.3 milliseconds
per image. This is about what simple logic would expect
with four cores. However, the time continues to improve
modestly for each five or so additional threads until it begins
to level out at about 20.5 seconds at about 23 threads.
Thereafter, the improvement is a tenth of a second or so for
five or so additional threads. It is somewhat counter intuitive
that one should get any improvement at all after the image
has been evenly decomposed over the four cores. It is not
entirely clear why this occurs but our current hypothesis is
that it may be the “GPU effect” where many threads can
mask memory, cache or other kind of latency if thread
switching is efficient enough. Also, fast thread switching
among virtual processors in the hardware (called
Hyperthreading) may play a role. The target computer has
two virtual processors per core and this is known to increase
overall performance in many cases.

Other test cases with different kinds of image processing
functions show similar behavior although the computational
loads vary based on the nature of the computation. Sobel and
Wallis have computational heavy loads that just simply
require hefty computational capacity. Sobel employs square
roots and Wallis uses logarithms. On the other hand,
Average and Unsharp Mask are both light weight
computations that employ little more than addition and
division. Hence, they require less computational capacity as
is clear from the graph.

With the addition of SIMD instructions, the added
improvement ranges from about a 14% improvement for few
or no threads to 36% for the maximum number of threads
tested. With only two threads, Sobel took 87.2 seconds for
all 10K images or 8.7 milliseconds per image, whereas with
55 threads, it took 12.87 seconds for all 10K images or
about 1.3 milliseconds per image.

VIII. RELATED RESEARCH

A key difference between most previous research and
DSLGen

TM
 is that DSLGen

TM
 starts working strictly in the

problem domain and programming process domain rather
than the PL domain. Virtually all previous research chooses
representation systems that are based to some degree upon
PL constructs or abstractions thereof. This includes
compiling technology, generator technology [4] [5] [7] [21]
[28] [29], computer aided software engineering (CASE) [13],
model driven engineering [21], Aspect Oriented
Programming (AOP) [17], Anticipatory Optimization
Generation (AOG) [6] [7], general optimization based
methods [1] [19] [16], parallel or specialty programming
languages [8] [12], programming languages superficially
similar to DSLGen

TM
‘s partitioning model [14],

programming language augmentation systems [15] [26],

Figure 5. Performance vs. thread count

Copyright Software Generators, LLC, 2013

maintenance support systems [1] [2], refactoring [18] and
other related technology and methods for creating
implementation code from a specification of a computation.
This representational choice forces conventional generation
technologies to introduce design and PL forms,
implementation structures, organizational commitments and
other execution platform based details too early and thereby
make design decisions about the architecture of the solution
that will prevent other desired design decisions from being
made later. Or at least, it will make those other desired
design decisions require revision of the model or design and
often difficult to automate.

In general, there are two important properties that
differentiate these various approaches from DSLGen

TM
: 1)

The specifications of the computations in these approaches
are not invariant over a variety of execution platform
architectures, and 2) target program implementations
exploiting specific high capability features cannot be fully
and automatically generated without compromising the
invariance property. That is, user action is required either to
revise the computational specification model to fit the new
execution platform or to extend an overly abstract and
therefore incomplete input specification to target a specific
execution platform. Generation of target program
implementations for a variety of execution platforms that
exploit the execution platform features (e.g., multicore
parallelism, vector instructions, etc.) requires human
redesign or reprogramming in one form or another. For
example, in these approaches, the transition from one
execution architecture (e.g., simple Von Neumann) to
another (e.g., multicore and/or vector machines) requires
user action to adapt the computation specification or model
to the new execution architecture.

In many cases, these conventional technologies often
force a top down, reductionist approach to design where the
top level programming structure and the essence of its
algorithm are expressed first and then the constituent essence
is recursively extended step by step until the lowest level of
PL details are expressed. However, that initial structure may
be incompatible with some desired design requirements or
features that are addressed later in the development or
generation process. The initial design may have to be
reorganized to introduce such design requirements or
features. For example, the requirement to fully exploit a
multicore computer requires a significant, difficult and many
step reorganization to fully exploit the performance
improvements possible with multicore. Automation of such
reorganizations at the programming language level is
seriously complicated and except for relatively simple cases
is prone to failure. This is why compilers that can compile
programs written and optimized for one execution platform
are often unable to satisfactorily compile the same programs
for a different execution platform with an architecture that
employs a significantly different model for high capability
execution and fully exploit the high capability features of the
new architecture. For example, programs written for the pre-
2000 era Intel platforms are largely unable to be
automatically translated to fully exploit the multicore
parallelism of the more recent Intel platforms. Human based

reprogramming is almost always necessary to fully exploit
the multicore parallelism.

While much research has been highly PL oriented, some
research is clearly working in the problem domain. A prime
example is the work of Jim Neighbors, who introduced the
idea of using domain specific information in program
generation. [23] [24] [25] His approach is to map from
purely problem domain oriented languages through a series
of language to language mappings, incrementally evolving to
pure programming language representations. While
DSLGen

TM
 is consistent with that spirit, the underlying

machinery (e.g., the non-top-down design approach, the non-
PL logical architecture model, the APCs, the incremental
design feature encapsulation and the incremental addition of
sets of PL features phase by phase) distinguishes the
DSLGen

TM
 approach from Neighbor’s work. Nevertheless,

Neighbors’ work has made significant contributions to
program generation from which this work has benefited.

IX. CONTRIBUTIONS

The contributions of this work are due in large part to the
fact that this work breaks with convention in a number of
ways. Perhaps the most important break is avoiding the PL
domain in the initial modeling process. This allows the
implementation neutrality of the INS and allows the
separation of the INS from the specification of the
execution platform (EXPS) while still allowing the
generated programs to exploit the full range of high
capability features of the EXPS. While some systems
emphasize language neutrality [29] rather than
implementation neutrality, their specifications clearly derive
from the PL domain and they therefore inherit the liabilities
of the PL domain.

The ability of DSLGen
TM

 to exploit high capability
features arises from another important contribution,
specifically, the design representation system based on
associative programming constraints. The design
representation system allows the initial and early stage
designs to be organized as logical architectures thereby
allowing the system to operate in the problem and
programming process domains and to introduce PL
constructions and assumptions incrementally. Operating with
problem domain concepts such as edge and center partitions
allows DSLGen

TM
 to begin to manipulate and extend the LA

without (initially) being restricted by the constraints inherent
to programming languages.

Organizing the IL definitions as provisional
transformations that are malleable provides the opportunity
for incrementally adding design features by using higher
order transformations to revise the IL definitions to
incorporate those features but still defer casting them into
programming language constructs until late in the generation
process. Thus, the IL becomes the stand-in or precursor
representation for the code details that have yet to be
concretely determined. For example, expressions like
Partestx(sp) can stand-in for code or meta-information (e.g.,
assertions) that cannot be refined to concrete form until the
implementation context (i.e., a specific partition) and locale
(i.e., the location in the AST) are concretely and finally

Copyright Software Generators, LLC, 2013

determined. And when that context is eventually pinned
down (e.g., to Edge1), Partestx(sp) can be specialized (e.g.,
to Partestx(sp-Edge1)), which will move it a step closer to
refinement into a concrete logical expression.

DSLGen
TM

 relies heavily on inference and implication.
For example, the APCs are described by a set of logical
assertions that are augmented as the design progresses. This
allows architectural features and programming clichés to
be expressed inferentially rather than structurally and
proscriptively. This defers making PL level design
decisions. These PL representational forms are hard to
revise, change and manipulate. For example, in DSLGen

TM
,

adding messy design details and programming clichés can be
deferred until the broad architectural structure is settled.

In summary, DSLGen
TM

 represents a fundamentally new
paradigm for program generation.

X. ACKNOWLEDGMENTS

I want to thank two contributors who recently began
helping with the commercialization of DSLGen

TM
 – Mitch

Lubars and Rob Pettengill. Mitch did the performance testing
and implemented the Fourier-Motzkin based inference
engine. Additionally, Mitch wrote a prototype of a
Slicer/Slicee target program from which the author
abstracted the Slicer/Slicee design pattern used to support
one class of synthetic partitions. Rob is working on a search
and bookmarking facility for the transformation history
debugger, which is used by Domain Engineers who intend to
extend and customize DSLGen

TM
’s domains and

transformations. Additionally, both Mitch and Rob read this
paper and provided many comments and suggestions that
improved it.

References

[1] Robert L. Akers, Ira D. Baxter, Michael Mehlich, Brian J. Ellis, and
Kenn R. Luecke, “Case study: Re-engineering C++ component
models via automatic program transformation,” Information and
Software Technology 49, 2007, pp. 275-291.

[2] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS®:
Program Transformations for practical scalable software evolution,”
International Conference of Software Engineering, May 2004, pp. 10.

[3] David F. Bacon, Susan L. Graham, and Oliver J. Sharp, “Compiler
transformations for high-performance computing,” ACM Surveys,
Vol. 26, No. 4, December, 1994, pp. 345-420.

[4] Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas, “Scalable
software libraries,” Symposium on the Foundations of Software
Engineering. Los Angeles, California, 1993, pp. 191-199.

[5] Ted J. Biggerstaff, “A perspective of generative reuse, annals of
software engineering,” Baltzer Science Publishers, AE Bussum, The
Netherlands, 1998, pp.169-226.

[6] Ted J. Biggerstaff, “Fixing some transformation problems”
Automated Software Engineering Conference, Cocoa Beach, Florida,
1999, pp. 10.

[7] Ted J. Biggerstaff, “A new architecture of transformation-based
generators,” IEEE Transactions on Software Engineering, Vol. 30,
No. 12, Dec., 2004, 1036-1054.

[8] Ted J. Biggerstaff, “Automated partitioning of a computation for
parallel or other high capability architecture,” Patent no. 8,060,857,
United States Patent and Trademark Office, filed January 31, 2009,
issued November 15, 2011.

[9] Ted J. Biggerstaff, “Non-localized constraints for automated program
generation,” United States Patent and Trademark Office, Patent no.
8,225,277, filed April 25, 2010, issued July 17, 2012.

[10] Ted J. Biggerstaff, “Synthetic partitioning for imposing
implementation design patterns onto logical architectures of
compuatations,” United States Patent and Trademark Office, Patent
no. 8,327,321, filed August 27, 2011, issued Dec. 4, 2012.

[11] Guy E.Blelloch, Jonathan C.Hardwick, Siddhartha Chatterjee, Jay
Sipelstein, and Marco Zagha, “Implementation of a portable nested
data-parallel language,” in Proceedings of PPOPP '93 Proceedings of
the fourth ACM SIGPLAN symposium on Principles and practice of
parallel programming, 1993, 102-111

[12] Guy Blelloch, “Programming parallel algorithms,” Communications
of the ACM, 39 (3), March, 1996, pp. 85-97.

[13] CASE Tools, See http://en.wikipedia.org/wiki/Rational_Rose .

[14] Bradford L. Chamberlain, Choi, Sung-Eun, Deitz, Steven J. and
Snyder, Lawrence, “The high-level parallel language ZPL improves
productivity and performance,” Proceedings of the IEEE International
Workshop on Productivity and Performance in High-End Computing,
2004, pp. 1-10.

[15] Barbara Chapman, Gabriele Jost and Ruud Van Der Pas, Using
OpenMP, MIT Press, 2008.

[16] Daniel E.Cooke, J. Nelson Rushton, Brad Nemanich, Robert
G.Watson, and Per Andersen, “Normalize, transpose, and distribute:
an automatic approach to handling nonscalars,” ACM Transactions
on Programming Languages and Systems, Vol. 30, No. 2, 2008, pp.
49.

[17] Tzilla Elrad, Robert E. Filman and Atef Bader, “Aspect-oriented
programming,” Communications of the ACM, Vol. 44, No. 10, 2001,
pp. 29-32.

[18] Martin Fowler, Kent Beck, John Brant and William Opdyke,
“Improving the design of existing code by refactoring,” Addison-
Wesley, 2000, pp 431.

[19] M. W. Hall, S. P.Amarasinghe, B. R.Murphy, S. W.Liao, and M.
S.Lam, “Interprocedural parallelization analysis in SUIF,” ACM
Transactions on Programming Languages and Systems, Vol. 27, No.
4, July, 2005, pp. 662-731.

[20] Neil D.Jones, “An introduction to partial evaluation,” ACM
Computing Surveys, Vol. 28, No. 3, 1996, pp. 480-503.

[21] Steve Macdonald, Kai Tan, Jonathan Schaeffer, and Duane Szafron,
“Deferring design pattern decisions and automating structural pattern
changes using a design-pattern-based programming system,” ACM
Transactions on Programming Languages and Systems, Vol 31, No.
3, April, 2009.

[22] Model Driven Engineering. See http://en.wikipedia.org/wiki/Model-
driven_engineering .

[23] James M. Neighbors, “The Draco approach to constructing software
from reusable components,” IEEE Transactions on Software
Engineering, SE-10 (5), (Sept. 1984) pp 564-573.

[24] James M. Neighbors, “Draco: a method for engineering reusable
software systems,” In: Ted Biggerstaff and Alan Perlis (eds.):
Software Reusability, Addison-Wesley/ACM Press (1989), pp. 295-
319

[25] James M. Neighbors, see http://www.bayfronttechnologies.com/.

[26] OpenMP Architecture Review Board, “OpenMP Application Program
Interface,” Version 3.0, May 2008.

[27] Gerhard X. Ritter and Joseph N. Wilson, The Handbook of Computer
Vision Algorithms in Image Algebra, CRC Press, 1996.

[28] Kai Tan, Duane Szafron, Jonathan Schaeffer, John Anvik And Steve
Macdonald, “Using generative design patterns to generate parallel
code for a distributed memory environment,” Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of parallel
programming, June, 2003, pp. 203-215.

[29] Satnam Singh, “Computing without processors,” CACM, Sept. 2011,
pp. 46-54.

Copyright Software Generators, LLC, 2013

