
This talk describes DSLGenTM and its technology for translation of Domain Specific Languages (DSLs) into efficient code that exploits the 
high capability features (e.g., parallelism) of an arbitrary target execution machine. In principle, DSLGen™ can be applied to a
computation in any problem domain and high capability code can be generated for any target machine. The examples focus on 
high capability features (e.g., parallelism) of an arbitrary target execution machine. In principle, DSLGen™ can be applied to a
computation in any problem domain and high capability code can be generated for any target machine. The examples focus on 
computations in the Digital Signal Processing (DSP) problem domain and illustrate generation of code for three different execution 
platforms (Von Neumann, multicore and vector).

The key idea underlying this technology is a fundamental representational change that completely differentiates it from previous work 
(i.e., from MDE, Refactoring, Aspect Oriented Programming, other synthesis work, etc.). That change rejects Programming Language (PL) 
Abstractions in the computational specification and even in the generator's early design process. In the initial specification of the 
computation and the initial representation of the generator's design of the implementation, there are no classes, methods, functions, 
scopes, or other abstractions that fall into the Programming Language Domain (PFD). Instead, the generator begins in the problem 
domain by using a fundamentally new abstraction -- an Associative Programming Constraint (APC). APCs factor out or isolate singular 
(possibly global) design features and thereby partially and provisionally specify each singular design feature in the eventual generated 
program. Only when a set of interrelated APCs are combined to form a Logical Architecture (LA) do they fully define how to map a
domain specific expression of the computation into a generated program expressed in the PL domain (e.g., expressed in the C language). 
In the course of that overall generation process, the LA is evolved and reorganized by addition of so-called synthetic APCs that introduce 
elective design features (e.g., multicore parallelism and/or instruction level parallelism) into the final program. The mapping of the LA to 
final code additionally exploits design frameworks (a formalization of the "gang of four's" design patterns) to provide global
architectural frameworks to house cloned and specialized elements of the computation specification (e.g., frameworks might include 
interrelated thread routine skeletons and global synchronization patterns) and low level coding cliches (e.g., portions of 
those frameworks might include thread cliches and individual synchronization steps).

This talk provides a glimpse of what an APC is, how it is used, what a tools-eye view of the LA internal structures look like (i.e., what a 
domain engineer extending DSLGenTM might see) and what the code generated by DSLGenTM looks like.

Additionally, this fundamental representational change leads to a fundamental operational change. Reprogramming is never required 
to take advantage of new execution platform architectures and their specialized facilities. Only DSLGenTM needs a one time update with 
a new generator backend that tailors the generation process to the new execution platform.

(Note: The kernel of this material is based on an invited paper (http://www.softwaregenerators.com/Papers/WorkshopPaper.pdf) and 
talk given at the DReMeR ‘13 workshop ( http://www.nvc.cs.vt.edu/ICSRworkshop-DReMeR-13/technical-program.html ) held in 
conjunction with 13th International Conference of Software Reuse (http://softeng.polito.it/ICSR13/index.html). Portions of this material 
were also used to give a Tools Demo at the main conference. Overall, this material provides a sneak peek at the forthcoming DSLGen™ 
generator system and its technology. This version of the material has been extended with additional slides, connecting links and speaker 
notes to allow a standalone understanding of the materials without the need to actually hear the live presentation.)
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The next few slides pictorially illustrate the broad goal of the DSLGen™ program generation 

system. It also illustrates several implementation architectures that can be handled by the system. It also illustrates several implementation architectures that can be handled by the 

current implementation of DSLGen™.

- Implementation neutral spec of computation (“Image Algebra”, see Ritter et al) + separate 

spec of execution platform (both domain specific)

-Execution platform spec says emit C language and partitioned computation (“partitioning” 

to be defined later in this presentation)

- New execution platform architecture requires only new set of transformations, generator 

phases, and classes
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- Implementation neutral spec of computation UNCHANGED!! 

- Spec for different execution platform (Optimize for multicore with MS threads and load - Spec for different execution platform (Optimize for multicore with MS threads and load 

leveling for heavyweight computations)
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- Implementation neutral spec of computation UNCHANGED!! 

- Revised execution spec of execution platform (Optimize for Instruction level parallelism - Revised execution spec of execution platform (Optimize for Instruction level parallelism 

using Intel SSE instructions)
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- Implementation neutral spec of computation UNCHANGED!! 

- Revised execution spec of execution platform (Optimize for Instruction level parallelism - Revised execution spec of execution platform (Optimize for Instruction level parallelism 

using Intel SSE instructions and generate MDE artifacts)
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The problem with the goal of translating the domain specific (DS) specification of the 

computation into programming language (PL) implementations for a wide variety of computation into programming language (PL) implementations for a wide variety of 

differing execution architectures is that the PL implementations are widely varied in their 

forms and features, and there is no obvious way to create them from the DS specification. 

If we choose to express some progenitor form in a PL-based representation (even if the 

representation is abstracted as with MDE), then the transformation from that progenitor 

form to the varying implementation forms becomes a difficult and heretofore insolvable 

reprogramming problem.

Let us look at the variety of forms and features that must be created to see what we are up 

against.
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We will use a common example translation problem (Sobel based edge detection in images) that we will carry 

through the whole presentation. The images a and b illustrate a specific example of a Sobel edge detection through the whole presentation. The images a and b illustrate a specific example of a Sobel edge detection 

computation. The specification of the Sobel edge detection computation is illustrated by the Domain Specific 

(DS) expression in the center, which is written in a DS language call the “Image Algebra” (IA) (See Ritter et al). 

The IA uses DS operators (e.g., ⊕, which is a “convolution”) operating on DS operands (e.g., images a and b 

and “neighborhoods” s and sp). We will define the convolution operation and a neighborhood in a minute. 

This expression is an  Implementation Neutral Specification (INS) of the computation, which means that it is 

independent of the implementation architecture of the machine upon which it is to run on. That means that 

the INS never needs to be changed (i.e., to be reprogrammed) regardless of the existing or future 

implementation platform.  It further means that the INS provides no information about implementation form 

that the computation will take when converted into code for some specific implementation architecture (e.g., 

multicore machine, vector machine or GPU based machine).  The architecture of the implementation 

machine and the features of the machine that should be exploited will be separately specified via a set of high 

level DS descriptors (e.g., Multicore, ILP (Instruction Level Processing), SSE, etc.). Examples of these are 

illustrated in the first few slides.

So, what computation does this example INS expression specify? In summary, it says a grayscale (i.e., black 

and white) image a is “convolved” with a “neighborhood” s to produce a new image. The resultant image is 

then squared (i.e., each pixel value is squared). Then a second image is produced by convolving a with a 

different neighborhood sp and it is also squared. Those two images are added together (i.e., corresponding 

pixel values are added) producing a third image. Image b is produced by taking the square root of the third 

image.

Now, let’s look at the essence of this computation.
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A convolution is computed for all non-edge (i.e., center) pixels a[i,j] by pair wise multiplying  

a[i,j]  and its neighboring pixels with the corresponding weights of the neighborhood s and a[i,j]  and its neighboring pixels with the corresponding weights of the neighborhood s and 

then summing all of those values, which produces a pixel at position [i,j]  in the 

intermediate image (a convolve s). For the moment, we will informally represent the 

weights by some function w of s with “some args” to be defined later. The shorthand used 

for this will be “(w s … )”. We will tighten up the definition of w later in this talk.

The neighborhood sp produces an analogous image. Notice that the weights of s are the 

weights of sp rotated 90 degrees clockwise, which is the hallmark of so-called Sobel edge 

detection. Remember these operations just produce the non-edge portions (i.e., center 

portions) of the first two intermediate images of the overall Sobel edge detection formula. 
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The case for edge pixels is analogous to the center pixel computation except that all 

weights of s and sp are 0 for edge pixels. Thus, the pixel value of (a convolve s) and (a weights of s and sp are 0 for edge pixels. Thus, the pixel value of (a convolve s) and (a 

convolve sp) will both be 0.

You may notice that we are being a bit sloppy with this chart illustrating the definition. 

How? Since a[i,j] is an edge pixel, at least one row or column of neighboring pixels will not 

exist (or a row and a column will be missing for corner pixels). The actual definitions 

DSLGen™ uses will account for this automatically but in the Sobel Edge detection definition 

(as opposed to some other computation, like image averaging), this is masked by the fact 

that (w s …) and (w sp …) are zero for edges. So, even if we did not properly account for 

this, partial evaluation would eliminate the error. However, it does matter in other 

computations, e.g., image averaging. In image averaging, the neighborhood loops have 

varying beginning and ending indexes that depend upon whether the pixel is a corner pixel 

(which will average four pixels), a non-corner edge pixel (which will average six pixels) or a 

center pixel (which will average nine pixels). These loop range variations will manifest 

themselves, in the implementation code generated, by a conditional expression for the 

indexes if the computation is not partitioned (i.e., the same code computes all cases) and 

by separated instances of neighborhood loops for the partitions (i.e., corners, non-corner-

edges and centers) if the computation is partitioned (i.e., there are separate loops for each 

case). Bottom line: this presentation picture is not a fully precise expression of the 

underlying loop definitions but the generated code will be.
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Now, given those definitions let’s see how these computations are expressed in 

implementations for different execution architectures. The important point is that we are implementations for different execution architectures. The important point is that we are 

now taking into consideration the structure of the execution architecture and exploiting 

what performance opportunities that it may provide. The next set of slides should provide 

insight into what the generator is up against in its goal of generating code customized to 

highly varied execution platforms. They also will provide concrete examples to motivate the 

generation steps that will be described as we illustrate how DSLGen™ operates.
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For a Von Neumann machine, the generation is pretty much a matter in inlining domain 

operator and operand code definitions. Let’s look more closely at the design features of the operator and operand code definitions. Let’s look more closely at the design features of the 

simple Von Neumann implementation code…
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The only elective design feature introduced for this example is the restructuring of the 
computation such that it is “partitioned” into its natural case computational structure, i.e., computation such that it is “partitioned” into its natural case computational structure, i.e., 
the edge pixels are computed separately from the center pixels. Partitioning in this simple 
example is not of much performance value but it provides an opportunity to introduce the 
concept of partitioning to the audience within a simple context. In other examples, 
partitioning may be used in conjunction with other design features and patterns (e.g., 
thread based parallelism) to great performance advantage. In short, a partitioning 
separates a computation into separate pieces that are computed by different formulations 
of program code.

The “design feature” of note for edge pixel processing is that the generic 2 dimensional 
loops for processing a general pixel have degenerated to one dimensional loops and the 
pixel value computation (RHS of the assignment) has degenerated to a constant. As we will 
see in the tools demo (a later talk), this simplification will arise via an interaction between:

• partitioning conditions (e.g., (== Idx14 0) where Idx14  is one of the indexes), 

• pixel computations specialized to a partitioning condition (e.g,. A neighborhood weight is 
0 for an edge pixel), 

• the inlining of domain specific component definitions, which is performed by the 
generator during a late phase, and 

• the partial evaluation system, which will performs simplifications of the inlined 
expressions.

Now, let’s look at the center pixel code.
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Here we see the generalized forms of the loops (i.e., two dimensions of processing)  for the 

center pixels. But note that these loops clip off the edge pixels (as we would expect). That center pixels. But note that these loops clip off the edge pixels (as we would expect). That 

is, the main loops over the image have ranges of [1, (Rows -2)] and [1, (columns – 2)] rather 

than [0, (Rows -1)] and [0, (columns – 1)]. 

The loops processing the neighborhoods (P15 and Q16) are straightforward.  Two answer 

variables have been introduced (ans45, ans46) and they correspond to the two convolution 

expressions in the problem domain specific specification of the Sobel computation. Later, 

we will see that the structure of the RHS of these computations is a pixel expression times 

a C language conditional expression that mimics the definition of the weight function (w) 

for either the s or sp neighborhood. Finally, the ISQRT expression mimics the form of the 

problem domain specific specification of the Sobel computation.

All in all, except for partitioning the edge pixel computations, the resultant code is not 

much more complex than code produced by simple inlining of definitions. However, that 

will change dramatically when we examine a thread based parallelism example next.
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For the case of thread based implementation on multicore machines, we see a globally

different architecture in the generated code. We have three separate routines: a thread different architecture in the generated code. We have three separate routines: a thread 

manager, a thread routine processing the edges and a thread routine for processing “slices” 

of the center partition. That is, the center partition has been further partitioned into slices 

that will be executed in parallel. So let’s look at the thread manager’s design features.
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We see some rather low level detailed code, e.g.,  for starting up threads – one thread call 

for processing all of the edges, and one for starting each of the (many) center slice threads, for processing all of the edges, and one for starting each of the (many) center slice threads, 

which is inside a NEWLY minted loop that is calculating the starting index of the next center 

slice. The center slice is implied to be 5 rows of pixels. So, we infer that their will be floor ( 

(m – 1)/5) slices and a partial slice if ((m – 1) mod 5) is not zero.

There is some other mysterious low level code, which we will ignore for this overview. In 

the generated code, the low level code detail arises from design frameworks. These will be 

introduced later in this presentation.
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The edge pixel thread routine is pretty much like that of the Von Neumann example with 

the exception that there is some synchronization code added. It is important to note that the exception that there is some synchronization code added. It is important to note that 

the generator decided to batch up all of the edge pixel processing into a single thread 

routine. It uses domain specific knowledge about the typical computational heft of edge 

pixel computations to (heuristically) make this decision. A later example will illustrate this 

decision making.
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The thread routine that processes the center slice bears a striking although not exact 

resemblance to the Von Neumann center partition processing code. Notable differences resemblance to the Von Neumann center partition processing code. Notable differences 

are the thread synchronization code at the very end, the use of the h parameter as the 

starting row index for the slice and the min expression defining the loop completion. The 

min expression accounts for the (possibly) two different sizes for a center slice. That is, all 

but one slice are 5 rows of pixels and the last slice MAY be fewer than 5 rows. Or, it could

also be 5 rows too.

On the other hand, if the user had specified the use of Instruction Level Processing (e.g., 

Intel’s SSE instructions), there would be a much greater deviation in the form of the center 

processing code. So, let’s take a look at code produced for ILP processing using SSE 

instructions.
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This is a slightly more complex example than the previous grayscale examples (i.e., it is for a 

color image with RGB color planes) but for the purposes of illustration, this example will color image with RGB color planes) but for the purposes of illustration, this example will 

illustrate the important design features nicely. The only major computational difference 

between this RGB example and a simple grayscale image example is that the Sobel 

processing code is duplicated for each color plane. However, the key implementation 

difference between this and previous examples is that the requirement to use SSE 

instructions induces significant changes to the design features of the code. 
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The edge pixel processing is duplicated for each color plane but other than that there is not any 
serious computational differences from the earlier examples. However, from the point of view of serious computational differences from the earlier examples. However, from the point of view of 
the implementation structure, there are significant global structural changes induced by the SSE 
design requirement in the center pixel processing code. 

For the center pixel processing, only the red color plane processing is shown in this slide, but the 
green and blue processing is analogous. Notice the dsarray9 and dsarray10 are neighborhood 
weight arrays with the constant values that were shown in the earlier slide depicting the essence of 
the computation. The generator has constructed vectors of values because the SSE instruction that 
is most applicable to this computation (i.e., PMADD or product multiple and add) requires vectors 
as input. (BTW, the constant values are computed by the generator simulating a loop over the 
neighborhood positions and partially evaluating the definition of w for the specific neighborhood 
being processed.)

Importantly, notice that the neighborhood loops have completely disappeared and they have been 
replaced by expressions of calls to C macros (e.g., PMADD, PADD, and UNPACKADD) that will set up 
the data for and trigger the namesake SSE instructions. Each PMADD operation handles one row of 
neighborhood pixels and the corresponding neighborhood weight values from dsarray9 or 
dsarray10. The answer variables we saw earlier have become answer C structs (i.e., anscolorpixel2 
and anscolorpixel4) that now have RGB fields.

For the record, if the user had specified both a thread based parallelism AND the use of SSE vector 
instructions, the code produced would be the expected integration of the two sets of design 
features.
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So, the goal of this extended look at different implementation architectures for different 

execution platforms is 1) to illustrate the kind of code generated by DSLGen™ and 2) to execution platforms is 1) to illustrate the kind of code generated by DSLGen™ and 2) to 

disabuse the listener of the notion that it might be possible to automatically translate (i.e., 

reprogram) from one form to another. The programming language representation of these 

implementations makes automatic reprogramming an impossible problem (in my opinion). 

Even if one attempts to abstract the PL forms as with Model Driven Engineering, the 

problem is still too difficult to accomplish for all but the most trivial problems. The lack of 

applications for purchase that will perform such reprogramming jobs is prima facie 

evidence for this conclusion. Most reprogramming tools that one can purchase have a very 

narrow focus and have a smart human programmer firmly in the processing loop.

This conclusion has driven the DSLGen™ work away from PL based representations and 

toward non-PL, problem domain oriented representations. And this is key to DSLGen™ ’s 

ability to generate optimized code for such a diverse and opened ended set of execution 

architectures. 

So, let’s examine this idea of problem domain abstractions and see how they work.
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The DSLGen™ model rejects programming language abstractions (PL) as being too 

restrictive for the early design phases and invents a fundamentally new abstraction that is restrictive for the early design phases and invents a fundamentally new abstraction that is 

specific to the problem domain. DSLGen™ even eschews MDE abstractions and models 

(even though MDE’s objective is to make the program specification more generic and 

therefore, more easily changeable) because those abstractions and models are still are 

based on abstractions that are PL oriented (e.g., OO classes, procedures, parametric 

communication, etc.).   Even though MDE labors to abstract the PL structures, it still allows, 

and in a sense, forces the engineer to commit to models that are biased toward one or 

another particular implementation architecture (e.g., threaded parallelism or vector 

parallelism). This bias may make choosing one implementation form easy but a different 

one difficult. So, even the MDE level of abstraction is problematic for generation for a wide 

range of different implementation architectures.
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This slide just makes the point a bit more concretely. Abstractions that define “how” the 

computation proceeds or “how” it is architected are too strongly committal to one computation proceeds or “how” it is architected are too strongly committal to one 

particular implementation architecture or another. The elements that DSLGen™ avoids are 

those that define the “how” of structures whose concrete forms will eventually appear in 

the final code – things such as OO classes and methods, routines, loops, control flow, etc. 

We want to leave the DERIVATION of those elements in the generated code to the 

generator because that allows greater possible variation in the final product. And as 

important, or maybe even more important, it eliminates the need to reprogram the target 

program when it needs to be rehosted on an implementation platform with a significantly 

different architecture, one that requires significantly different design structures to exploit 

that architecture.
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So, rather than build explicit structures that are abstract forms of PL structures, DSLGen™ 

builds structures of constraints that “imply” design features of the eventual PL structures builds structures of constraints that “imply” design features of the eventual PL structures 

that will be derived. These constraints are called Associative Programming Constraints (or 

APCs) because they are associated with the domain specific computation elements much 

like natural language modifiers are associated with the grammatical elements that they 

modify. APCs are problem domain objects (in the OO sense) that modify domain specific 

expressions of a computation. Each APC identifies one singular (possibly global) design 

feature that will be in the eventual implementation code of that computation. Can you 

write code from an APC?  NO! You need a whole set of APCs that provide all of the design 

features that will be in the final implementation in order to generate implementation code. 

This is because there is rarely a one to one mapping between APCs and PL-based 

abstractions of the implementation code. In general, the mapping is a many to many 

mapping. 

If you take one idea away from this talk, it should be that APCs are not Programming 

Language based implementation structures. They are not executable forms.

APCs are a fundamentally new abstraction that makes generating a highly varying range of 

implementation forms a solvable problem.  Let’s look a little more closely at APCs.
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The motivation for APC’s is analogous to the motivation for modifiers in natural language. That is, an APC is a modifier of a domain 

specific expression (e.g., a convolution expression) that specifies some distinct design feature in the eventual programming language (PL) specific expression (e.g., a convolution expression) that specifies some distinct design feature in the eventual programming language (PL) 

implementation form of that domain specific expression. For example, the APC might provide the “nominal” form of the loop or loops 

required to perform the computation. However, this is only a partial specification of the PL implementation form because it does not 

determine the context or even the concrete implementation form of the loops. There are many open questions unanswered by a 

singular APC. For example: Are the implementation loop or loops partitioned into pieces? And are those loop pieces organized into 

thread routines or re-expressed as SSE instructions (e.g., PMADD instructions)? If SSE instructions, what triggers the reorganization 

necessary to reform the weight values into vectors (e.g., DSArray9 and DSArray10 of pervious example)?  And so forth. Thus a singular 

APC is unlikely to be sufficient to generate the implementation for the target routine. It is unlikely that code written  directly from a 

singular APC will be the same as the eventual code of the generated target routine. Too many other design features (represented by 

other APCs) will be needed to fulfill the requirements imposed by the user’s description of the execution platform features to be 

exploited in the target routine. It is much more likely that a number of APCs will be required to fully specify the PL implementation. 

Moreover, like modification structures in natural language, these APCs will need to be formulated into a structure (i.e., a logical 

architecture or LA) that captures the interrelationships among them. For example, a partitioning APC may modify a loop APC and 

therefore imply addition features of the PL loop implementation.

Furthermore, the APCs are provisional in that the LA is likely to change as the generator introduces new synthetic APCs that introduce 

new elective design features (e.g., repartitionings of loops) and as it revises the structure of the LA. For example, component definitions 

may be specialized to and therefore organized under the new partitions. That is, the structural relationships of the LA evolve step by step 

toward the structural relationships that will exist in the final PL implementation form.

Conventionally, one tends to think of “constraints” as being represented by some kind of formulaic expression (e.g., a predicate calculus 

expression). However, while formulaic expressions do play a role in some APCs (e.g., partition APCs will have a so-called “partitioning 

condition” expression), APCs also have several additional representational facets and features. For the most part, they are CLOS objects 

that imply something about the eventual PL implementation by their existence and interrelationships. But beyond that, because they are 

problem domain entities, they also may have domain knowledge features or properties. For example, image “edges” have the domain 

property of being “lightweight” computations and that property may be employed by the generator to decide upon thread designs. 

Recall that the edge loops in the earlier thread design were batched into a single thread rather than each having their own thread. The 

“lightweight” domain property was used heuristically by the generator to make that design decision. Similarly, image center partitions 

are known to be “heavyweight” computations because there are often many individual computations to be done and because the 

individual computations are often fairly complex. That domain property was used by the generator to decide to slice the center partition 

into computational slices and to assign each to its own parallel thread.
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(This hidden slide allows continuation of speaker’s notes for this slide.)

APCs are composed and manipulated to represent the evolving design of the final target program. The “algebra” of these APCs are composed and manipulated to represent the evolving design of the final target program. The “algebra” of these 

compositions and manipulations for a particular problem domain is expressed by the transformations that define the 

processing of DSLGen™ for domain specific expressions in that domain.

While partitioned computations (defined via partitioning APCS) represent the essential pieces of the overall  

computation, they provide little or no information about what kind of a framework will be required by the PL context to 

allow these essential pieces to do their work and then integrate their individual results to realize a correct and coherent 

computation. This information will be provided by a separate abstraction, a design framework, which will be uniquely 

determined by the data and form of the LA in conjunction with the user’s description of the target implementation 

platform. The design framework will provide both

1. A Global architectural framework to house the cloned and specialized elements of the computation 

specification (e.g., frameworks might include interrelated thread routine skeletons and global 

synchronization patterns) and

2. Low level coding clichés specific to the design framework (e.g., portions of those frameworks might 

include thread clichés and individual synchronization steps).

One can think of a design framework as a formalization of the “Gang of four’s” notion of a Design Pattern.

Design frameworks complete the implied design of the target computations. Later in this presentation, we will examine 

design frameworks more closely in the course of walking through the overall generation process for a thread based 

implementation for a multicore machine. But for the moment, let’s look a bit more closely at the kinds and semantics of 

the APCs the generator is dealing with. ..next slide..
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The DSLGen™ uses two broad categories of constraints (i.e., APCs) in defining the Logical Architecture of a domain specific 
computation: Iteration constraints and partitioning constraints. Iteration constraints are further divided into two computation: Iteration constraints and partitioning constraints. Iteration constraints are further divided into two 
subdivisions – loop and recursion constraints. Because of the nature of our domain examples (Digital Signal Processing), 
we will focus on loop constraints. A loop APC is the nominal description of one or more loops over some problem domain 
data structure (e.g., a grayscale digital image), meaning that it provides the essence of the computational iteration 
structure without making any commitment to how that iteration structure will be expressed in the target implementation 
program. Or put differently, it tells “what” the computation is computing without telling exactly “how” the 
implementation program will achieve that “what.”

The second broad category of constraints (APCs) is the Partitioning constraint, which provides a provisional division of 
loop APCs (and computations in general) into parts, where these “parts” may be located and used in some as yet 
undetermined substructure of the target implementation program form. That as yet undetermined substructure will 
likely be provided by a design framework that provides 1) the broad architectural context and structure of the overall 
program implementation form of the computation, 2) some “holes” within that context designed to receive those 
aforementioned parts and 3) the interstitial (i.e., connective) tissue that ties the parts together with each other and with 
the design framework context.

Partitioning constraints are further divided into two types (i.e., Natural and Synthetic). These respectively distinguish 
between partitioning that is inherent to the specific computation being generated (i.e., Natural Partitions) or partitioning 
that is the result of elective design features that the user desires to have in the target program implementation (i.e., 
Synthetic Partitions). 

Natural partitions are instances of problem domain specific types/classes within DSLGen™. These types/classes form a 
problem domain language by which to talk about (i.e., specify) parts of a computation without having to express the parts 
in terms of programming language abstractions and structures. So, in the DSP domain, one can express the concepts of 
image edges, centers, corners, non-corner edges, and so forth. This is an open-ended language that can be easily 
extended to include meaningful partitions for the DSP domain or any other domain of interest (e.g., data structures, user 
interface, network, web, IT, etc.). For example, the closely related domain of numerical analysis computations includes 
concepts like upper triangular, diagonal, singular matrix, among many others.

(continued on next slide)
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(This hidden slide allows continuation of speaker’s notes for this slide.)

Synthetic partitions provide the facility to introduce implementation domain concepts, that is, concepts that encapsulate Synthetic partitions provide the facility to introduce implementation domain concepts, that is, concepts that encapsulate 

elective design features that will relate to design frameworks and let us build design framework (DF) patterns that 

capture architectural structures in the DF without having to descend into the detail of and commitment to programming 

level structures and operations. In an example that we will look at, a synthetic partitioning concept will define a “slice of 

an image center”, which will mean that it is a specialization of the natural partitioning constraint center and thereby, will 

inherit those properties of a center partition (e.g., definitions of programming components specific to a center such as a 

neighborhood weight function) that are no different from (and therefore, not specialized for) a slice of an image center.

However, other properties that are specific to a slice of an image center (e.g., definitions that determine loop ranges for a 

slice of an image center) will be specialized for it. Thus, such component definitions are said to “encapsulate the design 

feature” of a slice of an image center and the code that is generated from those definitions will correctly express that 

design feature in the target program implementation code.

APCs allow DSLGen™ to build a functionally-based logical architecture (LA) of the computation and evolve that LA (via the 

introduction of synthetic partitions) to an architecture that meshes with some target design framework and thereby can 

be cast into actual code that has the desired properties. Functionally based definitions of components, like a 

neighborhood weight function for a convolution, provide the “referential transparency” property, which allows the 

definitions to be relocated within the LA (and to a limited degree within a DF) without the kind of dependencies that 

programming language abstractions would introduce. That is, “referential transparency”  means that the generator does 

not have to deal with side-effects of the component definitions.

So, to get a tiny bit more concrete, the next slide shows an abstract view of an initial LA for a specific example.
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Here is an abstract example of a set of initial LA layers, where a problem domain loop (e.g., 

a loop over a grayscale image or RGB image) is by implication partitioned into edges and a loop over a grayscale image or RGB image) is by implication partitioned into edges and 

centers because of the partition APC  that modifies it. Within an edge partition (e.g., the 

top edge of the image, just to get concrete), the neighborhood (e.g., sp) is specialized into a 

neighborhood specific to that partition (e.g., sp-edge1). Furthermore, that neighborhood 

specialization will trigger the component definitions [e.g., the Method-Transform (MT) 

defining (w sp …) ] to be specialized to the specific partition (e.g., edge1) producing a 

Method-Transform like (W sp-edge1 …). To achieve this specialization, the generator 

assumes the partitioning condition of one of the partitions is true (e.g., (== i 0)), substitutes 

“t” for that expression and partially evaluates the RHS of the MT (w sp …). The result of that 

partial evaluation becomes the new RHS of the definition of (w sp-edge1 …). In a few 

moments, we will show how this specialization occurs (see the IL Specializations slide 

below).

Thus, each partition object has a set of component definitions specialized to it for building 

code elements that are specific to that definition. These specialized definitions 

“encapsulate” the design feature of “edge-ness” or “center-ness” of digital images. When 

the generator in-lines these definitions, we can be assured that they will generate code that 

reflects this design feature. A little later in the talk, we will see some concrete examples of 

LA-s as seen by a domain engineer who is using a tool called the Architecture Browser in 

the course of his debugging or extending the generator.
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So, let’s look at the two specifications provided by the application programmer to DSLGen™ 

to generate differing implementation code for differing execution platforms. We will start to generate differing implementation code for differing execution platforms. We will start 

with the specification of the computation of Sobel edge detection.  (Reader’s Note: the 

following slide is a “build” slide and the speaker’s notes for that slide reflect this. If you 

are reading this presentation as a pdf file, you will have to use your imagination!)

(NB: the word “edge” is an overloaded term in the context of this talk. The Sobel algorithm 

is referring to visual edges in an image and “edge” in DSLGen™ is a subclass of the 

matrixpartition class (which itself is a subclass of the APC class). Thus, that latter “edge” is a 

partition. These kinds of word collisions are unavoidable in a semantically rich environment 

like this but I assume that the listener can easily disambiguate based on context.)
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First mouse click – the heart of Sobel edge detection expressed in the Image Algebra (IA) as the formula that we have 

seen and analyzed earlier.  b = [(a ⊕⊕⊕⊕ s)2 + (a ⊕⊕⊕⊕ sp)2 ] 1/2seen and analyzed earlier.  b = [(a ⊕⊕⊕⊕ s)2 + (a ⊕⊕⊕⊕ sp)2 ] 1/2

Now we need some definitions for the elements of that expression. Let’s start with the two images, a and b. In DLSGen™ 

these are expressed as declarations that look like … second mouse click …

These definitions for images a and b use the built-in type BWImage. They further declare that a and b are M by N matrices  

(i.e., “:form (array m n)” ) containing BWPixels (i.e., “:of BWPixels” indicates grayscale pixels). BWPixels will eventually 

get mapped to a C language type, e.g., int.

We also have to declare m and n as the built-in type DSNumber and again, this type will eventually get mapped to a C 

type like int. Notice there are no initial values for m or n. The application programmer will have to provide them or 

provide code that provides them. 

Notice also that there is a logical expression in the “:facts” slot of m and n restricting those values to be greater than 1. 

Why? Any object in DSLGen™, and virtually every data entity the generator works with, is a CLOS object and will have a 

“facts” slot that may contain a conjunctive list  of assertions that provide facts about that object. These facts may be used

by the partial evaluator (PE) when it is trying to simplify a logical expression like “(i == (m + 1))” in a partition context in 

which it is already known that “(i == 0)”.  The partial evaluator will call the simultaneous inequality equation solver to try 

to determine whether “(i == (m + 1))” is true, false or unknown. Given, the fact that (m>1), the solver will be able to prove 

that “(i == (m + 1))”  is false when “(i == 0)”. Based on this result, the PE can simplify “(i == (m + 1))” to false, which may 

well lead to more extensive code simplifications (e.g., if “(i == (m + 1))” is the test condition of an if-then-else statement, 

that if-then-else would simplify to just the else clause).

Third mouse click – Now, we need declarations for the neighborhoods s and sp. The Neighborhood type is another built-

in definition. The s and sp neighborhoods are declared to be 2 by 2 arrays that, in the Image Algebra domain specific 

language, are indexed from -1 to 1 on both dimensions. This is to allow the center pixel of the neighborhood to be at [0,0] 

of the neighborhood. Of course, when mapped to C, these ranges will become 0 to 2.
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(This hidden slide is included to allow continuation of the speaker’s notes.) 

Now, we need some definitions for the domain specific operators. Let’s start with convolution, which is built-in. In fact, Now, we need some definitions for the domain specific operators. Let’s start with convolution, which is built-in. In fact, 
the IA provides a number of kinds of convolutions (e.g., sum of products, product of sums, max of all pair max-s, min of all 
pair min-s, and exclusive or). But for this example, we will need the sum of products version of convolution, which is 
defined as  Fourth mouse click.

This definition suggests that the computation walks over the neighborhood summing up the products of a pixel and a 
neighborhood weight defined for each [p+offsetp,q+offsetq] position within the neighborhood.

(Speakers NOTE: IF needed, the Center Action button will jump to the Intuitive computational essence of convolution for 
an a[i,j] pixel in the center part of the image followed by an analogous slide for an edge pixel. The Return Action Button 
on the edge pixel essence slide will return directly to this slide. Return Action Buttons return to the last slide viewed, so 
follow the sequence precisely or risk getting lost in the presentation sequence.)

Now, we need definitions for (w sp ….) and (w s …). Fifth and sixth mouse click. The definitions of w of sp and w of s are 
so-called method-transforms (MTs) because internally they become transformations that look and largely behave like 
methods. “w” behaves like a method name. sp and s behave somewhat like classes in that the w definitions are inherited 
up the type hierarchy starting with sp and s. For example, if we have a specialization of sp, say sp-edge1 but there is no 
MT that matches (w sp-edge1 …), then the MT defined for (w sp ….) would match and that transform would fire. Note 
that transforms are enabled only for specific NAMED generator phases and MT’s are enabled (by implication) only for the 
phase that does inlining of definitions (i.e., the “formals” phase) , which is rather late in the generation process after the 
code design process is completed.

So, in the definition of w of sp, what looks like a parameter sequence is actually a pattern specification, which will try to
match some AST subtree and will succeed if that subtree is of the form “(w sp ….)” or, as noted earlier, some other more 
specialized form based on a specialization of sp (e.g., sp-edge1). I don’t want to get too deeply into the weeds with this 
pattern matching process because the details are not really relevant for the level that we are describing. Suffice it to say,
that pattern building parts (like ArrayReference) are defined elsewhere and do a lot of fetching of relevant information 
and binding that information to the pattern variables (e.g., ?i, ?j, ?ihigh, etc.). This pattern will get the names of the 
indexes traversing the image (e.g., “i” and “j”), their ranges (e.g., ? ilow and ?ihigh, which might be bound to “0” and “(- m 
1)” ), and the indexes traversing the neighborhood (e.g., ?p and ?q) among other data.
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(This hidden slide is included to allow continuation of the speaker’s notes.) 

The RHS of the transform is the functional expression that is the body of the MT definition. That body 

basically says if either ?i or ?j is an edge pixel, the definition is 0. Otherwise, it is a messy expression that, if 

one walks through it on paper, one will derive the matrix of weights for sp shown in convolution essence 

diagram for NON-edge pixels. (Optionally, the speaker can use the Center Action Button to traverse to the 

Essence slide for center to show the values. But be sure to then click to next slide (edge pixels) and finally 

click the Return Action Button to come back HERE to further explain the key idea of Partitioning 

Conditions.)

Now, a key idea of this definition is that the application programmer is providing DSLGen™ with domain 

specific knowledge about the natural partitioning of this computation. He or she is doing this by the property 

list (a so-called “tags” list) that provides information about the (or …) expression. Seventh mouse click. The 

tags list provides a “constraints” property that defines the (or …) expression as a partitioning condition for 

this computation, identifies the kind of partitioning as “partitionmatrixtest” and identifies the kind of domain 

object(s) that the partitioning condition identifies (i.e., matrix edges). This will trigger construction of a set of 

four edge partition objects (one for each disjunct) and an implied center partition for the negative case. The 

construction of the partitioning objects further triggers the creation of specialized definitions of MTs for each 

partition object so that when code is generated for expressions within the contexts of these different 

computational partitions, the definition specific to that computational context (i.e., specific to that 

computational partition) will be used to generate that code. We can see an example of how these specialize 

definitions are derived by showing an example for this MT definition. (Speaker’s note: Click on the 

“Specializations of w of sp” Action Button. This goes to a build chart requiring 5 clicks to fully explain. But 

sure to return HERE using the Return Action Button upon completion of the slide.)

Now, we have all of the computational definitions we need to follow through a Sobel example. So now, let’s 

examine what the execution platform specification looks like. Click the Go To Preview of Machinery Action 

button to leave this slide for good.
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A convolution is computed for all non-edge pixels a[i,j] by pair wise multiplying  a[i,j]  and 

its neighboring pixels with the weights of the neighborhood s and then summing all of its neighboring pixels with the weights of the neighborhood s and then summing all of 

those values produces a pixel of the intermediate image (a convolve s). The 

neighborhood sp produces another image. Notice that the weights of s are the weights of 

sp rotated 90 degrees clockwise. Remember these operations just produce the non-edge 

portions of the first two intermediate images of the overall Sobel edge detection formula. 
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This is analogous to the center computation except that all weights of s and sp are 0 for 

edge pixels. Thus, the pixel value of (a convolve s) and (a convolve sp) will both be 0.edge pixels. Thus, the pixel value of (a convolve s) and (a convolve sp) will both be 0.

You may notice that we are being a bit sloppy with this definition. Why? Since a[i,j] is an 

edge pixel, at least one row or column of neighboring pixels will not exist (a column and a 

row for corner pixels). The actual definitions we will use will account for this but in Sobel 

Edge detection, this is masked by the fact that (w s …) and (w sp …) are zero for edges. So, 

even if we did not properly account for this, partial evaluation would eliminate the error. 

However, it does matter in other computations, e.g., image averaging. In image averaging, 

the neighborhood loops have varying beginning and ending indexes and these will manifest 

themselves in the implementation code generated by a conditional expression for the 

indexes if the computation is partitioned and by separated instances of neighborhood loops  

for the partitions (i.e., corners, non-corner-edges and centers).
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First Click – So, the objective is to produce new MT definitions that are specialized to the computational 
context of each different partition. We will use the MT defining the w function of the neighborhood sp as a context of each different partition. We will use the MT defining the w function of the neighborhood sp as a 
concrete example. The procedure is to assume one partitioning condition is true and all others are false. 

Second Click - We will start with the partitioning condition specific to the sp-edge1 neighborhood. The 
procedure substitutes t for the partitioning condition expression “(== ?i ?ilow)” and false (i.e., nil) in the other 
PC-s (although that is irrelevant in this example). Then DSLGen™ partially evaluates the RHS of the MT 
definition (third click) which produces a new MT definition that is specialized to sp-edge1.

Once all PC-s have used, the procedure processes the all-false case (fourth click), i.e., for this example, the 
case that is specific to a center pixel in the image. Partially evaluating that set of substitutions will produce 
(fifth click) the a new MT definition specific to sp-center5 in this example.

There are a number of MTs that taken together provide the “Intermediate Language” used to stand-in for the 
real code during the design phase while the architecture of the overall code design is being built, scopes 
developed and design features being encapsulated into the design. The IL provides the ability to use the most 
general form of operators, loops, etc. during the design process but when specific partitions are finally 
mapped onto portions of the physical code design, those portions of the physical design will be automatically 
specialized to the correct code forms when the IL is inlined.

The overall set of IL MTs for the domain of convolution in digital signal processing include, IL for mapping 
from neighborhood coordinates to image coordinates, IL for the start, end and increment for various kinds of 
loops (e.g., image loops or neighborhood loops), IL for mapping to the partitioning condition expression for 
the specific partition being inlined and so forth. Other problem domains will require other IL subsets.

(If you arrived at this slide via an Action Button and need to return to that slide, i.e., return to the 
Computation Specification slide, then click the Return Action Button now.)
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Partition based logical architecture (LA) of the computation: 

- Which models the natural case structure of the computation, where the case structure is determined by some set of  - Which models the natural case structure of the computation, where the case structure is determined by some set of  
partitioning conditions (PC)

- Which exists within the problem domain not the programming language domain,

- Whose organization is only one of potentially many APC constraints on the final organization of the generated code (i.e., 
organization within the programming language or implementation domain)

- Whose application (to formulate the actual code) is deferred, and

- Where the LA can be changed, extended and evolved before it is actually applied to formulate code.

An intermediate language (IL) for expressing generalized forms of operator definitions (e.g., ⊕, w, row, col, etc.)

- Where transformations that look and behave like methods (i.e., “MTs”) serve as generic definition mechanisms (e.g., recall 
(w sp ….) definition),

- Where Domain specific operator (e.g., ⊕ convolution) definitions initially can be defined in generic IL terms (e.g., generic ⊕
will be defined in terms of the IL MTs w, col, row)

- Where the IL definitions may be specialized to capture coding differences specific to different partitions (e.g., recall 
specialization of (w sp …) to (w sp-edge …) or (w sp-center …)),

- Where differences may be determined by partition specific design entities (e.g., pixel neighborhood entities like sp-edge and 
sp-center),

- Where specialized (i.e., partition dependent) IL definitions are associated with partition specific locales of the Logical 
Architecture structure

- Where cloning and specialization of the generic operator definitions to specific partitions can be deferred until partitions are 
ready to be mapped into the final code organization.

All of this machinery is designed to allow DSLGen™ 

- To build logical design architectures (LAs) largely within the problem domain at first, 

- To evolve those LAs to physical architectures (PAs)  (a.k.a. “synthetic architectures” or SAs) by adding 
implementation/execution platform specific design features next, 

- To clone the domain specific expression of the computation (associated with some partitioned LA) for the different 
partitions of that LA, and then 

- To map the cloned DS expressions into “holes” within design framework code skeletons. 

In short, design first within the problem domain, code second within the programming domain (a.k.a. the execution platform domain).

Now, let’s look at this machinery in action via a concrete example.
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Now that we have a sense of how to specify the target computation that we want to 

generate implementation code for, let’s re-examine the specification of the execution generate implementation code for, let’s re-examine the specification of the execution 

platform for thread based parallelism on a multi-core machine.
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Recall that we have seen this execution platform spec earlier in this presentation. To 

recapitulate, this spec is asking for C code with partitioning, optimization for multicore with recapitulate, this spec is asking for C code with partitioning, optimization for multicore with 

MS threads and load leveling for heavyweight computations. 

Within the generation process that follows, we will see the domain knowledge that an

image center computation is a “heavyweight computation” will be brought to bear.
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So, the first major generation phase partially translates the domain specific specification of 

the computation from images to pixels by introducing loop constraints, which in turn the computation from images to pixels by introducing loop constraints, which in turn 

triggers generation of a provisional, logical architecture (LA) for the target code. 

Conceptually, this LA looks like --
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This phase translates the INS from images to pixels by introducing a 2D (two-dimensional) loop constraint and inventing 
provisional names “i” and “j” for the loop constraint’s indexes, which will traverse the images a and b. This loop constraint provisional names “i” and “j” for the loop constraint’s indexes, which will traverse the images a and b. This loop constraint 
contains (among other provisional information) the ranges and increment sizes of i and j, as well as “Partestx(S)”, which is 
Intermediate Language (IL) that is the generic representation of the partitioning condition for the loop. This intermediate 
language (IL), in the context of some specific partition, will resolve to the concrete partitioning condition for that specific 
partition (e.g., it might resolve to “(i==0)). Thus, the IL (at this stage of the loop constraint’s evolution) has not yet 
committed the loop to a specific context. A specific context will cause the loop to take on different forms for different 
contexts. For example, Partestx(S) for a neighborhood within an edge partition (e.g., S-Edge1)  may (and in fact in this 
example will) cause the loop to have a different form than a loop with a Partestx for a neighborhood of an center 
partition (e.g., S-Center5). 

The “fat arrow” indicates that the loop constraint is “associated” with the partially translated domain specific spec of the 
computation (i.e., the INS), which means that the loop constraint acts like a modifier to the meaning of the INS 
expression.

In the course of this part of the generation process, five partition constraints are also created (based on the tags list from 
the application programmer in the definitions of W of the neighborhoods sp and s). Actually, each definition of w will 
generate its own set of five partitions (edges1 thru 4 and center5, and  edges6 thru 9 and center10) but as these 
propagate up the INS expression tree, the generator will discover that the partitions of the two sets have identical 
partitioning conditions and therefore, the two sets will be merged into (edges11 thru 14 and center15). (Note, there is an 
animation walk thru of this overall LA generation process shown in the supplemental Tools Demo presentation, also 
provided on the Software Generators web site.)

In the course of this process, specializations of the neighborhoods s and sp are generated and their Method-Transforms 
(MTs) that comprise the IL are specialized as we illustrated earlier. Some MTs may not require explicit specialization (i.e.,
they don’t vary with respect to the partitioning condition). In that case, no explicit specialized versions need be generated
and inheritance will produce the correct code during the inlining phase (which happens later). That is, if there is no MT 
definition for the exact AST expression (row s-edge1 ….), then inheritance will cause the MT that matches the AST 
expression  (row s …) to trigger instead and produce the correct result.

Now, let’s look at an actual example of a Logical Architecture as would be seen by a domain engineer who might be 
debugging or extending the generator’s domains.
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This is an actual example that uses the “Architecture Browser” for examining the large scale 

structure of a Logical Architecture. The names vary somewhat from our presentation based structure of a Logical Architecture. The names vary somewhat from our presentation based 

example but the audience should be able to perform the mental mapping of conceptually related 

parts (i.e., s maps to spart and sp maps to sppart).

The left pane of this viewer shows a directory-like outline of the LA starting with an instance of a 

loop constraint of type “Loop2d” (i.e., the 5TH instance of this type that has been generated by 

DSLGen™ so far). The Loop2d5 constraint is modified by a partition set (partitionset3) which 

contains an edge partition APC (edge11). There are two domain variables (i.e., spart-0-edge11 and 

sppart-0-edge11) that are specialized to the edge11 partition.  spart-0-edge11 and sppart-0-edge11 

correspond to our conceptual example’s specialized neighborhoods s-edge1 and sp-edge1. These 

two neighborhoods have been combined because they are both specialized on the same 

partitioning condition. That is, the generic IL forms (partestx spart-0-edge11) and (partestx sppart-

0-edge11) will both refine to the same concrete form (e.g., “(== idx1 0)” ).

The blue square and blue call-out show what has been selected “(vbls: spart-0-edge11)” and 

thereby opened up in the right hand pane for examination by the domain engineer (DE). The right 

hand pane shows that contents of that node of the LA, which in this case is redundant with the 

contents of the left hand pane. If instead the DE were to select the node “(partition: edge11)”, the 

right hand pane would reveal the non-redundant information that edge11 represents the 

combination of the equivalent partition sets generated earlier, edge1 and edge6.

Now, in the next slide, the DE has opened up and selected the center partition…
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And this is analogous to the edge partition example of the previous slide.

All of the items in this Browser are CLOS objects and can be double clicked to open an 

Inspector to display their contents. For the lowest level instances (e.g., an index item like 

“i” or “j”) this would be a Lisp inspector. However, for large scale structures that are 

DSLGen™ entities like transformations, the user can open a dialog specialized to 

transformations rather than laboriously opening a series of Lisp inspectors on all of the low 

level constituent parts and then trying to get the big picture perspective from those parts. 

For example, let us suppose that the DE wanted to examine the MT specific to the center15 

partition (i.e., “w.spart-0-center15.formals”).  This “triple dotted name” will be explained in 

the next slide.
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This shows a dialog that is specialized to transformation objects. A transformation object is defined by a three 
part name, that is,part name, that is,

1. The method/transform name (e.g., “w”),

2. The object where its definition is stored (e.g., in this case, spart-0-center15), and

3. The generator’s phase name in which the transform is “enabled.” This means that the transform may fire 
ONLY during that phase (e.g., in this case, the “formals” phase, which is the generator’s phase that does 
definition inlining).

Transforms may also have “pre” routines that fire after a successful pattern match of the LHS but before the 
AST subtree is rewritten by the RHS expression.; or “post” routines that fire after the RHS re-write has 
occurred. These are analogous to CLOS before and after methods. Preroutines generally perform 
bookkeeping operations – operations that don’t lend themselves easily or efficiently to specification by 
transformations. MTs (in contrast to the general, process transformations that drive the generator’s overall 
operation) typically do not have pre or post routines and this example is typical.

The large window pane at the top is a decompiled expression of a LHS pattern that is used to match an AST 
subtree. These patterns have been automatically enhanced with machinery that is useful to the 
transformation engine but not very informative for the DE. So, we will ignore it in this example.

The key piece of information in this example is the RHS of the transformation, which is shown in the large 
window pane at the bottom. This is the internal form of the body of the center specialization of w of spart,
which is the same as the center specialization of the w of sp definition that we saw in the slide illustrating the 
application programmer’s problem domain specific specification of the Sobel example. (Optionally, to 
temporarily go to IL Specializations slide use “Recall IL Specializations” action button. The target slide is an 
animation, so several clicks are required to get to the Center specialization. Use the Return action button 
to return to this slide when done with that slide.)

In comparison, let’s examine w.spart specialized to an edge. Advance to next slide.
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By contrast to the center specialization of w, an edge specialization produces a RHS of 0. 

When the problem domain expressions specific to this edge are in lined with their When the problem domain expressions specific to this edge are in lined with their 

definitions and then partially evaluated, this value will cause the arithmetic expression 

containing a instance of w.spart for this edge to partially evaluate to zero. That zero result 

will be one of the zeros on the RHS of the assignment statement within the edge 

processing loops. In other words, this definition is the key to the simplification of the pixel 

values for edge pixels in all three code examples we examined earlier.

(As with the previous slide,  if the speaker wants to forcefully make the connection to the 

MT specialization step shown earlier, he can temporarily go to the  IL Specializations 

slide. Use “Recall IL Specializations” action button. The target slide is an animation, so 

several clicks are required to get to the Edge specialization. Use the Return action button 

to return to this slide when done with the  IL Specializations slide.)
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The next step in generation is introducing elective design features based on the execution 

platform specification. An example of such a design feature would be the division of platform specification. An example of such a design feature would be the division of 

heavyweight computation partitions into sub-partitions that can be executed in parallel 

(e.g., slicing the image center pixels into center slices). Such design features will be added 

by 1) introducing so-called synthetic partitions that imply the design feature and 2) revising 

and reorganizing of other APCs appropriately. A conceptual view of an LA after synthetic 

partitioning with its accompanying revisions is shown in the next slide.
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The center partition has been revised into two specializations: 1) Center5-Ksegs 

representing the whole center partition after it has been sliced into groups of image rows, representing the whole center partition after it has been sliced into groups of image rows, 

and 2) Center5-ASeg representing an instance of a slice of the center. Simultaneously, the 

loop APC has been revised into two loops: one (over the newly created variable “h”)  that 

calculates the index of the first row of image pixels for each slice and a  second loop APC 

that processes through the rows of one center slice. The new center neighborhoods have 

been specialized to these new partitions as have their MT component definitions, if there 

are any component dependencies on the new partitions. In this case the MT definitions of 

w of the neighborhoods are unchanged from s-Center5 and sp-Center5 specializations of 

the neighborhoods, so MT definitions for the w method will be inherited from s-Center5 

and sp-Center5. However, MT definitions for Partestx (which refines to some specific 

partitioning condition) and Rstep (which refines to a loop increment value), are dependent 

on the new neighborhood specializations, so new MT definitions are generated for those 

neighborhoods.

That completes the LA of the partially translated INS expression so DSLGen™ now has 

enough information to clone specialized versions of the partially translated INS expression.
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Cloning and specialization of the INS expression is achieved by applying the LA to the INS 

expression thereby producing the following clones. expression thereby producing the following clones. 
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This diagram represents a conceptual view of the clones (i.e., 5-06 through 5-10) of the 

partially translated problem domain spec, their relationship to the various partitions and partially translated problem domain spec, their relationship to the various partitions and 

their association to the specialized forms of the loops.  But where do these specialized 

loops and clones go in the overall design of the target program? What is the context that 

receives these elements?

What DSLGen™ does NOT YET HAVE is an overall design framework that will provide the 

context for and the interstitial structure to receive and correctly integrate these various 

clones and loops. However, based on the execution platform spec descriptors and the 

nature of the computation, the synthetic design process has very purposely built a logical 

architecture that is aimed at a specific class of design frameworks (including the one we 

will use, which is named the Thread-Based Slicer/Slicee design framework). This design 

framework will provide that context and interstitial structure.  
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A design framework is a generalization and formalization of the "gang of four's" notion of a 
design pattern. (See “Design Patterns”, Gamma, et al, Addison Wesley.)design pattern. (See “Design Patterns”, Gamma, et al, Addison Wesley.)

Design frameworks provide basic facilities:

1. Global architectural structures containing “holes” to receive the cloned and specialized 
elements of the computation specification (e.g., in this case, these are interrelated 
thread routine skeletons and global thread synchronization patterns) and

2.  Low level coding clichés (e.g., portions of those frameworks might include thread 
clichés to initiate threads and synchronization steps to synchronize sets of threads), and

3. Expressions that specify and abstractly reference design and code entities from the 
logical architecture (e.g., ?vbls pre-computed by the design framework method such as 
generated routine names; APCs specific to the framework such as the constraints 
identifying the Slicer and Slicee constraints; clone-specific implementation neutral 
specification (INS) such as ?ins-hw (i.e., heavyweight is center slice) or ?ins-lw (i.e., 
lightweight will be the set of edges pixel computations). These ?vbls play the role of 
parameters for the design framework.

Now, let’s look at an example of a design framework for the thread-based slicer/slicee 
design.
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As mentioned earlier, the synthetic design process has very purposely built a logical architecture that is aimed at a set of 

designed frameworks including this specific framework (named the Thread-Based Slicer/Slicee design framework) that designed frameworks including this specific framework (named the Thread-Based Slicer/Slicee design framework) that 

will provide the architectural and interstitial structure for the resultant generated code.

This figure clearly shows the architectural structure of the three routines that comprise the thread-based Slicer/Slicee 

Design: 1. The thread manager routine (with a generated name of “SobelThreads8”), 2. The lightweight thread that will 

batch process all of the edge cases (with a generated name of “SobelThreads9”), and 3. The Center Slice code (with a 

generated name of “SobelCenterSlice10”).  

(Speaker: The action buttons are provided to jump to the actual code used to describe design features earlier in this 

presentation.  There are return buttons on the actual Slicer/Slicee code slides so it is easy for the audience to see the 

relationship between the abstract references to elements of the LA, e.g., ?ins-hw and ?managethreads, and the actual 

code. These design/code comparisons provide an opportunity for the audience to get a clear intuition about the 

source of code features. Some arise inexorably from the computational essence and some arise from the elective 

design features specified by the application programmer. Comparison can make this point in a highly intuitive way and 

can be used with the conceptual description below.)

Notice that the design framework for the edge cases and the center cases provides precious little real code level detail. 

They largely define the architectural structure (i.e., holes) into which the real code details provided by the cloned and 

specialized versions of the INS are to be put. If you think about it, that makes perfect sense because most of the code of 

these routines are in fact determined by the essence of the computation (provided by the domain specific INS 

specification). The routine structure, pattern of thread synchronization, and the parameter structure of the center slice 

routine arise from elective design features that are imposed on the computation because of the requirements contained 

within the execution platform description.

In the next few slides, we will follow the steps of the inlining process that will integrate the center thread routine 

(“SobelCenterSlice10”, which the method associated with the slicer/slicee design framework has bound to the variable 

?DoASlice) .
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Each design framework has a method routine that does a lot of the bookkeeping work. The simplest
bookkeeping job is the generation of unique names for the routines in the Slicer/Slicee framework and the bookkeeping job is the generation of unique names for the routines in the Slicer/Slicee framework and the 
binding of them to design framework specific variables (i.e., ?vbls variables) that the framework methods use 
to stand in for those names. Recall that the generated name for this routine in our example is 
“SobelCenterSlice10”. It will be bound to ?DoASlice.  

The domain concepts that are common between the framework’s skeletal forms and the DF method are 
represented in the DF by ?vbls or meta-operations (e.g., Idex) on ?vbls. In fact, all of the text represented 
here in yellow represents a “common language or protocol” for referencing entities in the LA as well as some 
of entities created by the design framework (e.g., the routine names). Some of these ?vbls represent the 
expected instances of specialized clones and loops. And the domain knowledge provides the generator 
sufficient clues to pin down each expected entity  shown in the previous slide titled Cloning and 
Specialization. (Speaker: Use the “quick peak…” action button to jump to the slide showing the specialized 
clones and point out the center slice clone (the domain specific expression specialized to s-Center5-Aseg 
and sp-Center5-Aseg) and its associated loop constraint (Aslice). Note that the other loop (Slicer) will be 
referenced from the protocol expressions in the thread manager routine (SobelThreads8). Then return to 
this slide with the return action button.)

To be more specific, the DF sets up the meta-information by binding of ?ins-hw to the clone that is the ?ins 
specialized to the heavyweight computation (i.e., the center partition computation) . If we look back at the 
Cloning and Specialization slide we will see that binding value will be “b [i,j]= [(a[i,j] ⊕⊕⊕⊕ s-center5-
Aseg[i,j])2 + (a[i,j] ⊕⊕⊕⊕ sp-center5-ASeg[i,j])2]1/2

“ Similarly, ?slicerconstraint will get bound to the “Aslice” 
loop APC, which computes the starting index of each center slice, and the search expression (idex
?slicerconstraint) will refine to the name of the target program index variable of that loop, i.e., “h”. Finally 
(for the Slicee), ?ASliceConstraint will get bound to the loop APC that processes a center slice (i.e., Aslice) .

Other ?vbls will get set up to handle the thread routine that handles to the edges and the thread manager 
routine but we will address those bindings when we show the evolution of those routines.

So, with the meta-information bindings we have identified so far, let’s follow the refinement of the ?DoASlice 
routine to code. …Next slide …
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All that has happened here is the inlining of routine name, it’s parameter and the INS clone 

specific to the center slice. Now, more or less all that is left to do is to generate the loop specific to the center slice. Now, more or less all that is left to do is to generate the loop 

structure from the Aslice constraint, recursively inline the operator definitions and do 

simplification via partial evaluation. (Actually, there is still a need for some tidying up of 

definitions for this scope, generating some comments to leave a forensic trail for the 

domain engineer in case of bugs as well as provide a bit of insight for the application 

programmer, and so forth. Some of the remaining steps are tying up loose ends and dealing 

with cosmetics like code pretty printing. )

Now that “more or less” comment is really “more” than “less” but getting into it is getting 

too far into the weeds. Suffice it to say, that the convolution operations on pixels has 

associated logical architectures (i.e., loop constraints) that will cause the generation of the 

neighborhood loops. (Speaker: Take a quick peek back at the Center Slice code and point 

out the loops over p and q as the result of the LA associated with convolution over pixels 

operations. Then use the return action button to return to this slide.)
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After generating the loop code from the Aslice APC, we will evolve to code that looks like 

the code in this slide. the code in this slide. 

After further inlining, partial evaluation and some tidying up, the final code will look 

something like the next slide.  … Next Slide …

54



The final code will look something like this (after IL inlining and partial evaluation).

(If the audience wants/needs to compare this to the code we looked at earlier that had 

all of the DESIGN FEATURES identified by CALLOUTS, use the Quick Peak action button 

and when done return to this slide via the Return Action button on the Quick Peak target 

page.)

Now, let’s examine how the lightweight clones get integrated into the design framework.
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This is the framework skeleton for lightweight processes. Recall that the generator made 

the decision to batch the edge computations into a single thread based on the domain the decision to batch the edge computations into a single thread based on the domain 

knowledge about the “edge” class that edge’s are lightweight computations (i.e., likely to 

be order(n) computations rather than something like order(n2) computations). In this case, 

?OrderNCases will be bound to the set of edge clones (diagram items 5-06 through 5-09) 

and their associated loop constraints (diagram item 5-03) from the Cloning and Specializing 

slide. (Speaker: Quick peak back to refresh the listener’s mind, if necessary.)
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Substituting the edge clones and their loop constraints we get the form shown here. … next 

slide …slide …
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Analogous to the center loop inlining, we inline the edge loops and refine the expressions 

to the point of convolution operations at the pixel level, i.e., convolutions over the to the point of convolution operations at the pixel level, i.e., convolutions over the 

neighborhood  of pixel a[i,j] where i and j are specialized appropriately for the four edge 

cases. Further inlining for the neighborhood loops and simplification leads to the next slide.
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Note that we have glossed over how the RHS of the assignment statements get simplified 

to zero. The short story is that lining the definitions for convolution  and recursively for its to zero. The short story is that lining the definitions for convolution  and recursively for its 

component operations produces arithmetic expressions multiplied times zero (i.e., the 

value of W for the various edge specific neighborhoods) which partially evaluate to zero. 

Note: The tool demo presentation associated with this presentation provides a sort of 

“animation” of this simplification for one specific case if you want to see the process at its 

most basic level. The take home point is that by specializing the MT definitions of operators 

to specific partitions, the code produced for those partitions will be the correct code for 

the context of the specific partition.

..next slide..
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Finally, let’s examine the refinement of the thread manager routine, which will define the control 
flow between the thread manager and the two other thread routines. Recall that ?DoOrderNCasesflow between the thread manager and the two other thread routines. Recall that ?DoOrderNCases
will be bound to the name of the routine (i.e., “SobelEdges9”) that is generated to compute the 
lightweight (i.e., edge) cases and ?DoASlice will be bound to the name of the routine (i.e., 
“SobelCenterSlice10”) that is generated to compute the heavyweight (i.e., center slice) cases. (Idex
?SlicerConstraint) will refine to the index name (i.e., “h”) generated for the ?SlicerConstraint loop 
constraint (i.e., Aslice).

Recall that the expressions in yellow font represent the protocol for referring to entities that are 
expected to be in the Logical Architecture but do not yet exist when the protocol expressions are 
written.

Additionally, the Slicer design provides the patterns of parallel processing and synchronization. That 
is, it initiates the SobelEdges9 thread routine and ceiling(m/5) instances of the center slice thread 
routine. All of these instances run in parallel. The final statement waits for all threads to finish. To 
keep this example pedagogically simple, there is no logic in this design to handle exception cases 
such as one or more threads not completing. However, it is not hard to revise this DF into a new DF 
that does do that. This is left as an exercise for the reader.

(Speaker: Use the “Quick Peak at Synthetic Architecture” action button to go back to the 
synthetic Architecture slide and Point to each item in that slide that is referred to in the yellow 
expressions. That is, the edge expressions and their associated loop APCs when talking about 
“?DoOrderNCases”, and the loop index name (i.e., “h”) in the “Aslice” loop APC when talking 
about (Idex ?SlicerConstraint) . )
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So, this slide shows the results inlining of the bindings of the routine names and parameter 

name (which were introduced earlier) into the DF. That is, the simple inlining of  

?managethreads,  ?DoOrderNCases and (Idex ?SlicerConstraint). 

But we still have a loop APC “Slicer” that needs to be processed into a programming 

language loop. … Next Slide …
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The loop generation process must create the loop over h from the logical conjuncts in the 

loop APC. The DF will use the Intermediate Language MT “Irange(Slicer)” to do this work, loop APC. The DF will use the Intermediate Language MT “Irange(Slicer)” to do this work, 

which will refine to code for the lower and upper limit of h. The loop increment comes 

from the Intermediate Language MT Rstep(S-Center5-Ksegs), which will refine to 5. The 

Rstep MT definition was created from the load-leveling specification in the user’s 

description of the execution platform.

At this point, DSLGen™ has generated the code that was used earlier in this presentation to 

illustrate the code generated for a multicore machine.
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The final result is the Thread-based Slicer-Slicee code that we examined earlier in this 

presentation and that exploited the multicore architecture. This completes the example presentation and that exploited the multicore architecture. This completes the example 

driven discussion of how DSLGen™ works.

If there is time and interest, the following (optional) slides discuss the performance of the 

generated code for various kinds of computations, various implementation architectures 

and various requirements imposed on the target implementation code. 

63



When “reading” the generated code, it was obvious that the various optimization strategies would improve 

performance but we had no numerical data to calibrate just how much. It was also clear that different kinds performance but we had no numerical data to calibrate just how much. It was also clear that different kinds 

of computations would respond differently to the various performance improvement strategies. So, we did 

some timing tests to get a calibration of how effective the various optimization strategies actually were for 

the different kinds of computations. We chose four computations to test. 

1. Sobel edge detection, which is computationally heavy because of the use of square and square root 

operations. 

2. Wallis edge detection, which also was computationally heavy because it uses logarithms.

3. Image Average, which is a computationally lightweight using only addition and division but which 

illustrates an interesting design feature in the code – i.e., partition specific variations in the 

neighborhood loop control expressions.

4. Unsharp mask, another computational lightweight (it is used to sharpen mammogram images by 

clarifying the boundaries of tumor masses).

The generated code was tested on a 4 core, 3.33 GHz Velocity brand computer with 12 GB of real and 24 GB 

of virtual memory. The computer is built on the Intel i7 CPU with Turbo mode, which allows overclocking

when the CPU is running under maximum temperature and power specification. It has 8 virtual processors. 

The code was compiled with Microsoft’s Visual Studio 2008 C/C++ compiler. 

The test data was a 215 by 215 pixel image in RGB format with a 24 bit pixel depth. 

(Continued on next slide….)
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(Continued) This figure shows the results for various computations decomposed into threads to be run in parallel. These 

tests were run 10,000 times per image. For Sobel, the best performance was achieved at 55 threads, which required tests were run 10,000 times per image. For Sobel, the best performance was achieved at 55 threads, which required 

approximately 20.3 seconds to run the full set, or about 2 milliseconds per image. The worst results were with two 

threads, one for the edge cases and one for the center, which required approximately 105 seconds for the 10,000 images 

or a bit over a 10 millisecond per image. This was roughly the same time required for the calibration case, a hand coded 

version compiled to use no parallelism of any kind. Notice that the time drops quickly with five threads (i.e., one for the 

edges and four for the image center), taking about 32.8 seconds for the full set of images or about 3.3 milliseconds per 

image. This is about what simple logic would expect with four cores. However, the time continues to improve modestly 

for each five or so additional threads until it begins to level out at about 20.5 seconds at about 23 threads. 

Interestingly enough this continued improvement appears to be a subtle effect with multicore parallelism for Sobel. One 

would expect little improvement by using significantly more threads than there are cores. That is, once you get beyond 

the number of real cores (i.e., 4 in this case), one would expect no further improvement by breaking the computation 

into more threads to be run in parallel. However, beyond 4 or 5 threads, the time continues to improve modestly for each 

five or so additional threads until it begins to level out at about 20.5 seconds at about 23 threads. Thereafter, the 

improvement is a tenth of a second or so for five or so additional threads. It is somewhat counter intuitive that one 

should get any improvement at all after the image has been evenly decomposed over the four cores. It is not entirely 

clear why this occurs but our current hypothesis is that it may be the “GPU effect” where many threads can mask 

memory, cache or other kind of latency if thread switching is efficient enough. Also, fast thread switching among virtual 

processors in the hardware (called Hyperthreading) may play a role. The target computer has two virtual processors per 

core and this is known to increase overall performance in many cases.

We get further improvement with the addition of SIMD (vector) instructions. The following slide shows the results for one 

heavyweight computation (Sobel) and one lightweight  computation (Image Average).

(See C:\Users\Public\Documents\Graphics\Documentation\Performance Data\[Subset of Actual Performance 

Numbers - 5-2-2010 For Documents.xlsx]Sheet1 )
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With the addition of SIMD instructions, the added improvement for Sobel ranges from about a 14% 

improvement for few or no threads to 36% for the maximum number of threads tested.  With only improvement for few or no threads to 36% for the maximum number of threads tested.  With only 

two threads, Sobel took 87.2 seconds for all 10K images or 8.7 milliseconds per image, whereas 

with 55 threads, it took  12.87 seconds for all 10K images or about 1.3 milliseconds per image. 

Interestingly, the effect for Image Average was significant and somewhat surprising – between 57% 

and 58% improvement regardless of the number of threads. What this suggests is that virtually all 

of the computation for Image Average can be done with instruction level parallelism (i.e., addition 

of a vector of numbers) leaving only a single additional arithmetic operation (i.e., multiplication or 

division by a constant) to be done via the standard arithmetic unit. So, the multicore parallelism 

improvement is a much flatter curve. Once one runs out of processors there is little additional 

effect although there may be some additional effect depending on the structure of the computation 

and its possible effect of processor latencies. Recall the comments from the previous slide about 

the counter intuitive improvement for Sobel beyond 5 or so threads.

By contrast, a much smaller amount of the Sobel computation can be done in parallel instructions 

(i.e., the PMADD operation on the three weight vectors and the three corresponding pixel vectors, 

where each of the vectors is only three numbers long) whereas the addition of the intermediate 

instructions (via the PADD instruction)  is relatively inconsequential. But more importantly, the 

square, addition and square root operations that follow the SIMD instructions will be done on the 

standard CPU arithmetic unit. These last three operations (and especially the square root 

operation) are likely to be the lion’s portion of the computation. Therefore, the really big 

improvement with Sobel arises because of the large scale parallelism provided by the thread based 

parallelism and this tends to swamp much of the savings of the instruction level parallelism of the 

SIMD instructions.
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The broad component architecture of DSLGen™ is shown in this figure. The architecture is 

“microprogrammable” in the sense that virtually all aspects of DSLGen™ are data defined. “microprogrammable” in the sense that virtually all aspects of DSLGen™ are data defined. 

This allows a domain engineer to create custom generators for arbitrary DSLs, to vary old or 

introduce new execution platform targets and to add definitions for new output languages 

or to tweak the definitions of an existing language to fit a custom variant of that language.

The foregoing has touched upon various components of DSLGen™ such as the Partial 

Evaluation (PE) engine without a great deal of operational depth. However, the 

supplementary Tools Demo presentation will show some of these components in operation 

within a specific problem context. For example, it will reveal how the initial Logical 

Architecture (LA) is formed via an “animation”, the role of the PE engine in the 

simplification of the edge processing loops, the operation of the History debugger, and so 

forth.
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Three patents that have been issued on this R&D so far.
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