

A Characterization of Generator and Component
Reuse Technologies

Ted J. Biggerstaff

tbiggerstaff@austin.rr.com

Abstract. This paper characterizes various categories of reuse technologies in
terms of their underlying architectures, the kinds of problems that they handle
well, and the kinds of problems that they do not handle well. In the end, it
describes their operational envelopes and niches. The emphasis is on generative
reuse technologies.

1 Introduction

As an organizing framework for the niches, I will characterize them along two
important dimensions of scaling: 1) how well they scale up in terms of raw size and
thereby programming leverage, which I will call vertical scaling, and 2) how well
they scale up in terms of feature variation, which I will call horizontal scaling. These
two dimensions are typically opposed to each other.

In the course of this analysis for each technology niche, I will describe the key
elements of the technology (e.g., the nature of the component building blocks or
specification languages) and the kinds of operations typical of the technology (e.g.,
inlining or expression transformations). While I make no effort to cover all or even
much of the specific research in these areas, I will identify some illustrative examples.
Finally, I will summarize the strengths and weaknesses of the technologies in each
niche. (See also 3.)

2 Concrete Components

The simplest form of reuse is the reuse of concrete components, which are
components that 1) are written in conventional programming languages, 2) are largely
internally immutable, and 3) represent a one-size-fits-all style of reuse. They include
such categories as functions, Object Oriented classes, generic functions and classes,
frameworks, and COM-like middleware components. They often exhibit serious reuse
flaws such as inadequate performance, missing functionality, inadequately populated
libraries, etc.

They succeed well in a few sub-niches. The first successful sub-niche is very large-
scale components that just happen to fit the programmer’s needs or are designed to a
standard that predestines a good fit. Such components trade customized fit and wide

scale reusability for high programming leverage. They cannot be used in a lot of
applications but when they can be used, they significantly reduce the programming
effort. The second successful sub-niche is smaller-scale components (e.g., as UI
components) that can achieve high customization via compositionally induced
variation and yet still exhibit adequate performance in spite of the compositionally
induced computational overhead. While performance is a typical problem of concrete
component reuse, it is often avoided in this sub-niche because of the nature of the
domain. For example in the UI, relatively poor performance is adequate because the
computational overhead of the one-size-fits-all componentry is masked by other
factors such as human response times. Further, domains in this sub-niche are often
defined by standards (e.g., the Windows UI) for which design tools and aids are easy
to build (e.g., UI tools). This sub-niche trades performance degradation (which may
be masked) for high levels of customization and substantial programming leverage
within the domain of the sub-niche. The proportion of the application falling outside
the sub-niche domain receives little or no reuse benefit. The third successful sub-
niche is where standards have been so narrowly defined that one-size-fits-all
components are satisfactory. The weakness of this sub-niche is the shelf life of the
componentry since their reusability declines as the standards on which they are based
are undermined by change. Communications protocols are a good example of this
sub-niche.

A serious weakness of concrete component reuse is caused by the restrictions of
conventional programming languages (CPLs). CPLs force early specificity of designs
(e.g., a component’s control structure may be subtly dependent on the structure of a
set of databases). This forcing of early specificity reduces the opportunities for reuse.
Other weaknesses are wrought by the method’s dependence on human involvement in
the reuse and adaptation process.

3 Composition-Based Generators

A fundamental difficulty of concrete components is the tension between optimality
of component fit and the need to scale the components up in size to achieve higher
levels of programming productivity. To address this difficulty, technologies have
been developed to custom tailor the fit by generating custom components from
compositions of more primitive building blocks that capture features orthogonal to the
programming constructs (e.g., orthogonal to OO classes).

Representative of this approach is GenVoca [1]. GenVoca, for example, provides
components from which frameworks of several related classes can be constructed
layer by layer (e.g., a collection framework with the classes container, element, and
cursor). Each layer represents a feature that will customize the classes and methods of
the framework to incorporate that feature. Thus, one layer might define how the
collection is shared (e.g., via semaphores), another might define its physical design
(e.g., doubly linked lists), another might define whether the collection is persistent or
transient and so forth. This allows a fair bit of customization of the detailed
framework design while the higher levels of the application (i.e., the algorithms that
use the collection) can remain generic.

This strategy works well in niches where the part of the application behind the
interfaces varies over such features while the central application core is generic with
respect to the features. For example, different operating systems, middleware, and
databases often induce such interface-isolated variation within application classes.
The feature-induced variations in the generated components are largely a local
phenomenon that does not induce too much global variation in the application as a
whole nor too much interdependence among distinct features.

Such reuse strategies are fundamentally based on substitution and inlining
paradigms that refine components and expressions by local substitutions with local
effects. Their shortcomings are that global dependencies and global reorganizations
are either not very effective or tend to reduce the optimality of fit introduced by using
feature-based layers. If the architectures vary more broadly or globally than such
features can deal with, other approaches are required.

Recent work [2, 10] attempts to extend the method to allow greater levels of
application customization by further factoring the layers into yet smaller components
called roles. Roles can be variously composed to effect greater parameterization of
the classes and methods comprising the layers. Fundamentally, role-induced
variations manifest themselves as 1) inheritance structure variations and 2) mixin-like
variations and extensions of the classes and methods comprising the layers.

The main weakness of composition-based generators is the lingering problem of
global inter-component dependencies and relationships, a problem that is amplified by
the fact that the specification languages are largely abstractions of conventional
programming languages (CPLs). That is, the control and data structures of CPLs
predominate in the specifications. While these structures may be ideal for
computation, they are often ill suited for specification. Specifications are easiest to
compose, transform and manipulate when they have few or no dependencies on state
information, on computational orderings, and on other CPL structures that are
oriented to Von Neumann machines. Unfortunately, the abstracted CPL component
specifications of this niche induce global dependencies that require globally aware
manipulation of the programs, a task that is fundamentally hard to do. These global
dependencies often require the structure of the generated application to be
manipulated in ways (e.g., merging iteration structures of separate components) that
are determined by the particular combination and structure of the inlined components.
Such dependencies often require highly customized application reorganizations (or re-
weavings) that occur after the composition step is completed. Such manipulations are
not easily accomplished on program language-based components that are assembled
by simple composition and inlining strategies (even on those PL components that are
somewhat abstracted).

4 Pattern-Directed Generators

Pattern-directed (PD) generators [8] allow greater degrees of customization
(horizontal scaling) than composition-based generators because they use domain
specific language (DSL) components that are less rigidly constrained than the CPL-
based components. For example, a DSL may have domain operators with implicit

iteration structures that can be combined and optimized in an infinity of problem
specific ways late in the generation process. In contrast, CPLs are biased toward
explicit expression of iterations, which limits the level of feasible customization and
forces the component builder to make early and overly specific design choices. In
short, CPLs necessitate early binding of detailed design structures whereas DSLs
allow late binding.

PD generators divide the world into domains each of which has its own mini-
language (e.g., the relational algebra) in which components can be defined. The mini-
languages are typically prescriptive (i.e., operational) rather than declarative. The
generation paradigm is based on rules that map from program parts written in one or
more mini-domain language into lower level mini-languages recursively until the
whole program has been translated into the lowest level mini-domain of some
conventional programming language (e.g., C, C++, or Java). Between translation
stages, optimizations may be applied that reorganize the program for performance.

These techniques achieve significantly greater degrees of custom component fit for
the target application (i.e., horizontal scaling) while simultaneously allowing scaling
up the size of the components. However, the cost is (sometimes) reduced target
program performance because while the rules that reorganize and optimize the
program at each stage can, in theory, find the optimal reorganization, the search space
is often very large. So in practice, target program performance is sometimes
compromised. Nevertheless, there are many application domains for which the
performance degradation is not onerous or may be an acceptable tradeoff for the
vastly increased programming leverage. The CAPE system [8] for generating
communications protocols, which is based on DRACO, is an example of a domain
where the tradeoff is acceptable.

5 Reorganizing Generators

Reorganizing generators extend the pattern-directed generator paradigm by
attacking the program reorganization problem so that the optimizing reorganizations
can be accomplished without significant search spaces. [4, 5] The trick is the
introduction of tag-directed (TD) transformations that are triggered based on tags
attached to the program components. The tags anticipate optimizations that are likely
to succeed once the program is finally translated into a form closer to a conventional
programming language. They allow optimization planning to occur in the problem
domain and execution of the optimizations to occur in the programming domain. They
reorganize the target program for high performance execution and do so without
engendering the large search spaces that pure pattern-directed generators often do.

I have built a system in LISP called the Anticipatory Optimization Generator
(AOG) to explore this approach. Fundamentally, AOG allows the separation of the
highly generic, highly reusable elements of an application from the application
specific, not so reusable elements. AOG provides methods to weave these generic and
application specific elements together into a high performance form of the application
program. This approach recognizes that an application program is an integration of
information from many sources. Some information is highly general and (in principle)

applicable to many specific application programs that fall into the same product line
of software (e.g., payroll programs). For example, the formula

Pay(Employee, PayPeriod) = Salary(Employee) *
HoursWorked (Employee, PayPeriod)

represents a conceptual domain relationship among the concepts Pay, Employee,
Salary, HoursWorked, and PayPeriod. Further, one can define
specializations of this conceptual relationship that account for various kinds of pay,
various kinds of employees (e.g., salaried versus hourly), and various kinds of pay
periods (e.g., regular, overtime, and holiday). Such relationships are highly reusable
but, of course, they are not yet code. That is, they are not directly reusable constructs.
In general, they cannot be cast directly into acceptable code by simple substitution
paradigms (e.g., inlining) because if we incorporate information about the specific
databases, for example, we will find that this simple relationship gets changed and
woven into programming structures that obscure its clean simple structure. For
example, several of the data fields may (or may not) come from the same database
(e.g., employee identification, salary, record of hours worked for various pay periods).
However, for those data fields that do come from the same database and potentially,
the same record in that database, the generated code should be organized to minimize
accesses to those fields that are in the same record of a database (e.g., access to the
employee identification and the employee address, which might be required if the
check is to be mailed, or access to employee identification and the employee’s bank
identification, which might be required if the check is to be direct deposited). Such
accesses are likely to be independently (and redundantly) specified in the component
specifications and therefore, they will likely be generated in separated areas of the
target code. Such redundancies must be identified and removed in the application
code. Similarly, sequential dependencies (e.g., the requirement to first get an
employee id in order to get the address of that employee) will have to be reflected
properly in the control structure of the resulting code. Neither requirement is easy to
accomplish with simple composition, inlining, and simplification technologies.

AOG addresses such problems by introducing a new generator control structure
that organizes transformations into phases and adds a new kind of transformation (i.e.,
a tag-directed transformation) that is particularly well suited to the task of reweaving
components to assure global relationships and constraints like those imposed by
specific graphics, database, UI or web structures.

Because AOG does so much program reorganization, thereby creating redundant
and abstruse program structures, simplification is a big part of many optimization
steps. AOG uses a partial evaluator to perform straightforward simplifications (e.g.,
arithmetic and logical reductions). It uses a Prolog-like inference engine to execute
those simplifications that require some inference (e.g., generating the simplest form of
loops derived when a single loop is split into special case and non-special case forms
of the loop).

The AOG reusable library contains different kinds of reusable components:
§ Pattern-Directed Transformations

o Object-Oriented Pattern-Directed (OOPD) Transforms
o Operator Definitions
o ADT Methods

§ Tag-Directed Transformations
§ Dynamic Deferred Transformations
§ Type Inference Rules

All PD transformations have the same conceptual and internal form:

XformName, PhaseName, TypeName:
 Pattern ⇒ RewrittenExpression, Pre, Post

The transform’s name is XformName and it is stored as part of the

TypeName object structure. It is enabled only during the PhaseName phase.
Pattern is used to match an AST subtree and upon success the subtree is
replaced by RewrittenExpression. Pre is the name of a routine that checks
enabling conditions and performs some bookkeeping chores (e.g., creating translator
variables). Post performs various computational chores during the rewrite. Pre
and Post are optional.

The various kinds of PD transforms are expressed in slightly different external

forms to allow AOG to do some of the specification work for the programmer where
defaults such as PhaseName are known. For example, the definition of the graphics
convolution operator ⊕⊕ (sum of products of pixels and weights) might look like a
component named Bconv where the default PhaseName is known and the default
storage location (i.e., TypeName) is determined by the specific operator ⊕⊕. Bconv
would be expressed as:

(DefComponent Bconv (⊕⊕ ParameterListPattern)
 (Σp,q ...sum of products expression...))

On the other hand, a trivial but concrete example of an OOPD would be

(⇒ FoldZeroXform SomePhaseName dsnumber `(+ ?x 0) `?x)

This transform is named FoldZeroXform, is stored in the type structure of
dsnumber, is enabled only in phase SomePhaseName, and rewrites an expression
like “(+ 27 0)” to “27”. In the pattern, the pattern variable “?x” will match anything in
the first position of expressions of the form “(+ __ 0).

AOG uses the various PD transformations to refine abstract DSLs to more specific
DSLs and eventually to CPLs. However, it organizes the PD transforms by phases
where each phase will perform a small step of the overall refinement. For example,
the PD transforms of one phase introduce loops implied by the operators such as ⊕⊕
and then move and merge those loops to minimize redundant looping.

On the other hand, TD transforms are used to accomplish various kinds of
optimizations such as architectural shaping, which alters the structure of the
computation to exploit domain knowledge of the hardware, middleware, or data. For
example, the SplitLoopOnCases transformation shapes a loop that is doing a graphics
image convolution operation so that the loop can exploit the parallelism of the Intel
MMX instruction set. It recognizes the case where the body of the loop is a case-
based if-then-else statement that depends on the loop indexes and splits the single

loop into a series of loops each of which handles a single case. The SplitLoopOnCases
optimization produces code that allows the pixel data to flow on the computer’s data
bus in chunks uninterrupted by conditional branches. This speeds up the overall
convolution. For example, it would split a loop like

for(i=0, j=0; i<m && j<n; i++, j++)
 if(i==0 || j==0 || i==(m-1) || j==(n-1))
 ...then case...;
 ...else case...;

into loops like

for(j=0; j<n; j++)...then case with i=0...;
for(j=0; j<n; j++)...then case with i=(m-1)...;
for(i=0; i<m; i++)...then case with j=0...;
for(i=0; i<m; i++)...then case with j=(n-1)...;
for(i=1, j=1; i<(m-1) && j<(n-1); i++, j++)
 ...else case...;

These new forms of the loop are dealing with separate sections of the image

separately. The first four special case loops are operating on the edge pixels in the
image (i.e., top, bottom, left and right) and the else-case loop is operating on the non-
edge pixels in the image. Subsequent TD transformations will shape the else-case
loop body into forms that can be directly translated to MMX instructions. The
resulting code of the then-cases will often simplify significantly under partial
evaluation because of the constants that are substituted for i and j (e.g., 0 for i).

Architectural shaping transformations attempt to exploit as much retained domain
specific information as they can. In this case, the tag that triggered the
SplitLoopOnCases transformation contains the knowledge that the loop will be
performing a computationally intense convolution operation and that such operations
lend themselves to the parallelism of the MMX instructions. This knowledge allows a
very focused and purposeful restructuring of the code.

Dynamic deferred transformations are part of specialized machinery for moving
generated code to contexts that do not yet exist when the code is generated. Type
inference rules are specialized transforms that infer the types of expressions for use in
finding applicable transformations to apply.

For a contrasting approach, the reader may want to explore Aspect Oriented
Programming. [6, 7] This approach has similar reorganization or reweaving objectives
but differing implementation machinery.

Reorganizing generators, like PD Generators, are well suited for translating domain
specific languages (DSLs) and because the DSLs can be quite abstract, they can
generate a lot of functionality for a small amount of specification (high vertical
scaling). In addition, they achieve a more optimal fit (high horizontal scaling) within
the application than with composition-based systems because, like PD generators,
they are composing DSL abstractions rather than the more concrete CPL abstractions.
Each DSL abstraction refines in combinatorially many ways at each DSL level based

on the particular DSL abstractions with which it is composed. Moreover,
reorganizing generators solve a problem that has long plagued PD generators -- that of
achieving context specific optimizations without a generator search space explosion.
Those combinatorially many choices at each DSL level that provide the desirable
horizontal scaling also tend to foster the generation of complex and convoluted code,
which may have unacceptable performance. Attempting to solve this performance
problem using global soups of transformations, as PD generators do, often leads to a
search space explosion and for many domains is not feasible. The trick of using tags
to retain key domain knowledge and use that knowledge to guide the process of
optimization vastly reduces the search space and leads to a focused and purposeful
optimization process with very little search involved.

6 Inference-Based Generators

These generators lean toward more declarative specifications that require general
inference engines to re-structure the pieces into prescriptive code. [9] The downside is
that domain engineering is more challenging than in previous cases and therefore,
only a few highly specialized domains have been developed. Nevertheless, such
generators can create the most highly customized (i.e., horizontally scaled) target
programs with target program performance that can be superior to hand-tailored
code.

7 Conclusion

Table 1. Characterization of Reuse Catagories

Niche Key Elements Key Operations
Concrete Reuse Programming

Language Basis
Hand Assembly

Composition-Based
Generators

Abstracted
Programming
Languages

Inlining & Simplification

Pattern-Directed
(PD) Generators

Domain Specific
Languages (DSLs)

Pattern-Directed (PD)
Transformations & Weak Inference
Methods

Reorganizing
Generators

Tagged DSLs PD and Tag-Directed
Transformations & Domain Specific
Inference Methods

Inference-Based
Generators

Formal Specification
Languages

Heavy Dependence on Fully General
Inference Methods

Table 1 summarizes the essence of these niches. As we proceed up the niche list,
we find that the technologies have an increasing ability to do more of the
programming work (vertical scaling) and an increasing ability to produce more
customized solutions (horizontal scaling). The price for this scaling is that successive
technologies require a greater up front investment in domain analysis and reuse
library creation. For a detailed look into some representative generator systems, see 6.

References

1. Batory, Don, Singhal, Vivek, Sirkin, Marty, and Thomas, Jeff, "Scalable Software
Libraries," Symposium on the Foundations of Software Engineering. Los Angeles, CA,
December, 1993.

2. Batory, Don, and Martin, Jean-Philippe, “An Algebraic Foundation for Program

Automation,” Personal Communication, 2001.

3. Biggerstaff, Ted J., "A Perspective of Generative Reuse," Annals of Software Engineering,

5, 1998, pp. 169-226.

4. Biggerstaff, Ted J., “Fixing Some Transformation Problems,” Automated Software

Engineering Conference, Cocoa Beach, Florida (1999).

5. Biggerstaff, Ted J., "A New Control Structure for Transformation-Based Generators," In

Software Reuse: Advances in Software Reusability, Vienna, Austria (Springer Lecture Notes
in Computer Science, June, 2000).

6. Czarnecki, Krzysztof and Eisenecker, Ulrich, Generative Programming, Addison-Wesley,

2000.

7. Kiczales, Gregor, Lamping, John, Mendhekar, Anurag, Maede, Chris, Lopes, Cristina,

Loingtier, Jean-Marc and Irwin, John: Aspect Oriented Programming. Tech. Report SPL97-
08 P9710042, Xerox PARC (1997)

8. Neighbors, James M., "Draco: A Method for Engineering Reusable Software Systems." In

Ted J. Biggerstaff and Alan Perlis (Eds.), Software Reusability, Addison-Wesley/ACM
Press, 1989, pp. 295-319. (See also http://www.bayfronttechnologies.com/ for more
information on DRACO and CAPE.)

9. Smith, Douglas R., "KIDS-A Knowledge-Based Software Development System," in

Automating Software Design, M. Lowry & R. McCartney, Eds., AAAI/MIT Press, 1991,
pp.483-514.

10.VanHilst, M. and D. Notkin, “Using C++ Templates to Implement Role-Based Designs”,

JSSST International Symposium on Object Technologies and Systems (ISOTAS'96), 1996.

10

