
Composite Folding and Optimization in
Domain Specific Translation

Ted J. Biggerstaff

June, 1998

Technical Report
MSR-TR-98-22

© Copyright 1998, Microsoft Corporation.

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

 - 1 - Copyright, Microsoft, 1998

Composite Folding and Optimization in Domain Specific Translation

Ted J. Biggerstaff
Microsoft Research
One Microsoft Way

Redmond, WA 98052-6399
tedb@microsoft.com

Abstract
Combinatorial increases in programming productivity

are possible by the introduction of high level operators
and operands for composite data structures such as
arrays, matrices, trees, record composites, etc. Such
operators and operands can be composed to generate an
infinite variety of virtual reusable components. However,
the performance of the code resulting from such
compositions is often inadequate because of the code
fragmentation and delocalization engendered by the
building blocks. Attempts to automatically reorganize this
code to optimize performance using conventional
optimization strategies are usually computationally
impractical because of the large search spaces
engendered. Anticipatory Optimization (AO) is a method
for compiling such compositions directly to optimized
code without large search spaces and indeed, without any
search space at all. The keys to AO are 1) distributed
optimization plans expressed via code annotations and 2)
transformation based optimization planning that
concurrently reasons over the domain information, the
generated program and the evolving optimization plan .

Key Words and Phrases: Abstraction, development
environments, domain specific, generators, optimization,
and reuse.

1. The problem
From a generator builder’s point of view, domain

analysis is the process of identifying domain specific
operators and operands plus the transformations that can
compile these operators and operands. The choice of how
to define such operators and operands leads to a quandary
between choosing operators that exhibit powerful
programming amplification through the combinatorial
opportunities provided by composition, and choosing
operators and operands that can be easily transformed into
high performance code. The central difficulty revolves
around delocalization of information. [10] If I factor the
operators and operands into highly general constructs, I
can write combinatorially many compact expressions with
them that effectively form an infinite virtual library of
reusable components, one component for each possible

composite expression. However, this means that the tightly
integrated information needed by the compiler to generate
high performance code is split across many operators,
operands and subexpressions. With current technology,
compiling such expressions requires huge search spaces of
possible transformation sequences to assure finding the
optimal localizations for high performance execution.

On the other hand, if I define less general operators and
operands in which cross operator and cross expression
code is already localized for performance reasons, the
number of possible variations that can be produced by my
generator drops precipitously and my infinite virtual
library very likely becomes a finite library. [3-6]

An example of this delocalization is illustrated by the
Image Algebra [13] expression for Sobel edge detection in
bitmapped images [4-6].

Expression 1:

image a, b :form (array m n);
b = [(a ⊕ s)2 + (a ⊕ sp)2]1/2 ;

where a and b are (m X n) grayscale images, ⊕ is a
convolution operator that applies the Image Algebra (IA)
template matrices s and sp to each pixel a[i,j] and its
surrounding neighborhood in the image a to compute the
corresponding pixel b[i,j] of b. s and sp are reusable OO
components that define the specifics of the pixel
neighborhood. In the domain specific expression, the
(implied) looping is delocalized. The subexpressions
(a ⊕ s), (a ⊕ s)2 , (a ⊕ sp) , (a ⊕ sp)2 , [(a ⊕ s)2 + (a ⊕
sp)2] , [(a ⊕ s)2 + (a ⊕ sp)2]1/2, and b = [(a ⊕ s)2 + (a ⊕
sp)2]1/2 imply six or seven distinct loops. In the ideal
executable code for a conventional sequential machine, all
of these loops would be optimally encoded as one loop
within which all of the operations would be accomplished.
Further, expressions of the form (a ⊕ s) delocalize the
information of the convolution. The ⊕ operator provides
the general convolution formula (i.e., the sum of the
products of the pixel values times the weights associated
with the pixel’s position within some pixel neighborhood)
and the methods of the IA templates s and sp provide the

 - 2 - Copyright, Microsoft, 1998

specific coordinates of the neighboring pixels, the specific
weights associated with each neighboring pixel, the
dimensions of the neighborhood, and any special case
behavior (e.g., image boundary processing). In the ideal
executable code, the general formula for ⊕ and specific
details of s and sp would be tightly integrated. However,
achieving this via automatic localization is made difficult
by the fact that the various values supplied by s and sp
may be arbitrarily complex computations, e.g., conditional
and/or parameterized expressions. For example, the
semantics of the ⊕ operator are defined as

 (a ⊕ s) ⇒ {∀i,j :{Σk,l : {a[row.s(a[i,j],k,l),
 col.s(a[i,j],k,l)]*w.s(a[i,j],k,l) }}}
where row.s(a[i,j],k,l), col.s(a[i,j],k,l), and w.s(a[i,j],k,l) are
methods of s that define the specific a[i,j] neighborhood
coordinates and associated weights. In this example, a has
dimensions (m X n) and the ranges of k and l are defined
for both s and sp as [-1:1]. The problem is that the
definitions of the methods of s may contain arbitrarily
complex expressions that likely will need to be
reformulated, moved, and combined across loop,
statement, and expression boundaries to achieve optimal
code localization for performance. For example, the
definition of a weight -- w.s(a[i,j],k,l) -- depends on whether
the neighborhood defined by s is completely within the
image a or a portion of that neighborhood is hanging over
the edge of a. Thus, for s and sp defined (for expository
purposes) by the matrices

s =
−
− ◊
−

1 1

2 2

1 1

φ

φ

sp =

− − −
◊

1 2 1

1 2 1

φ φ

with the diamond

centered on some a[i,j] focus pixel and φ

representing non-participating pixel locations, then w.s is
defined as

w.s(a[fi,fj],fp,fq) ⇒
{if ((fi == 0) || (fj == 0) (fi == (fm - 1)) || (fj == (fn - 1)))
 then 0;
 else {if ((fp != 0) && (fq != 0)) then fq;

 else {if ((= fp 0) && (fq != 0)) then (2 * fq);
 else 0 }}}

and the row and col methods are defined as
row.s(a[fi,fj],fp,fq) ⇒(fi + fp) and
col.s(a[fi,fj],fp,fq)) ⇒(fj + fq). One might be inclined to
simply inline these definitions for w, row, and col, and
then partially evaluate them to simplify. But this alone
yields pretty inefficient code – seven loops, five temporary
images, and many redundant expressions. In fact, the
localized code we would like to produce is

for (i=0; i < m; i++) /*Expression 2*/
 { im1=i-1; ip1= i+1;
 for (j=0; j < n; j++)
 { if(i==0 || j==0 || i==m-1 || j==n-1)

 then b[i, j] = 0;
 else { jm1= j-1; jp1 = j+1;
 t1 = a[im1, jm1] * (-1) + a[im1, j] * (-2) +
 a[im1, jp1] * (-1) + a[ip1, jm1] *1 +
 a[ip1, j] * 2 + a[ip1, jp1] * 1;
 t2 = a[im1, jm1] * (-1) + a[i, jm1] * (-2) +
 a[ip1, jm1] * (-1) + a[im1, jp1] *1 +
 a[i, jp1] * 2 + a[ip1, jp1] * 1;

 b[i, j] = sqrt(t1*t1 + t2*t2)}}}

This result can only be achieved if a long series of very
specific transformations are executed in a very specific
order. But this requirement engenders a very large search
space of optimizations. For example, if-then statements are
merged, loops are unwrapped, constants are folded,
expressions are moved into and outside of loops,
expressions are simplified via partial evaluation, and
common subexpressions are eliminated. It would be
computationally impractical for a general optimization
system to find this optimal solution in the huge space of
possible final forms for this code.

2. A Solution
A solution to this problem (called Anticipatory

Optimization) [4-6] anticipates an abstract optimization
plan and expresses this plan as a set of tags affixed to
various reusable components. These tags are effectively
deferred invocations of optimizing transformations. Thus,
the transformations are distributed in space (i.e., over the
program’s components) and in time (e.g., their triggering
times are expressed as optimization event expressions in
the tags). Domain specific expressions (e.g., the expression
for Sobel edge detection) to which tags be attached, serve
as a design blackboard where automated program
optimization and localization strategies can be mapped out
(i.e., anticipated), reasoned about, and revised without
altering the structure of the domain specific expression
until the moment when the final rewoven implementation
code is generated as whole cloth. The transformations that
implement this optimization strategy use three kinds of
information simultaneously: 1) program language
semantics; 2) domain knowledge; and 3) optimization
planning knowledge (i.e., the tags) to perform this
inference process, thereby allowing the transformations to
reason about the optimization process as well as the
program. This differentiates AO from other translation
strategies that only reason about the program. This strategy
reduces the optimization search space, making each
transformation choice a single choice. The choice is

 - 3 - Copyright, Microsoft, 1998

predetermined to be exactly the right transformation for a
given optimization event. The tags accomplish the
reduction of the search space by identifying: 1) the specific
transformation to be invoked (i.e., the one named in the
tag), 2) the specific object on which it will act (i.e., the one
to which it is attached), and 3) the specific time of
invocation (by virtue of its location on the program or by
virtue of an event expression defined in the tag).

3. An Example

3.1 Basic Definitions
Let us follow through the compilation of the Sobel edge

detection expression shown in expression 1. While
expression 1 is shown in a prettified publication form, the
actual form for expression 1 is not quite as pretty because
of its Lisp heritage (Expression 3):

(DSDeclare Image a :form (array m n) :of integer)
(DSDeclare Image b :form (array m n) :of integer)
(DSExpr (setf b (sqrt (+ (expt (bconv a s) 2)
 (expt (bconv a sp) 2)))))
In this expression, bconv is the convolution operator (⊕ in
pretty form), expt is the exponentiation operator,
DSDeclare is a Lisp macro that creates an instance of a
CLOS type (in this case, an Image type), and DSExpr is a
Lisp macro that creates an instance of an expression that is
to be compiled using AO techniques.

Expression 3 is what the end user writes but of course
this code draws upon components from a reusable library
that define s, sp, bconv, and so forth. The reusable
definitions for the reusable components are given in
expression 4. Expression 4a:

(DSDeclare IATemplate s
:form (array (-1 1) (-1 1)) :of integer)

(DSDeclare IATemplate sp
:form (array (-1 1) (-1 1)) :of integer)

where IATemplate is the Image Algebra template type and
the methods of s are defined as follows. (sp’s methods are
analogously defined.) Expression 4b:

(Defcomponent PRange (s ?plow ?phigh)
 (_Range ?plow ?phigh))

(Defcomponent QRange (s ?qlow ?qhigh)
 (_Range ?qlow ?qhigh))

(Defcomponent Row (s #.ArrayReference ?p ?q)
 (+ ?iter1 ?piter))

(Defcomponent Col (s #.ArrayReference ?p ?q)
 (+ ?iter2 ?qiter))

(Defcomponent W (s #.ArrayReference ?p ?q)
 (if (or (== ?iter1 ?i1low) (== ?iter2 ?i2low)

 (== ?iter1 ?i1high) (== ?iter2 ?i2high))
 (then 0)
 (else (if (and (/= ?piter 0) (/= ?qiter 0))

(then ?qiter)
 (else (if (and (== ?piter 0) (/= ?qiter 0))

 (then (* 2 ?qiter))
 (else 0)))))))

(Defcomponent pixelXtemplate
 (BackwardConvolutionOp

#.ImagePixelReference #.TemplateReference)
 (_Sum (?p ?q)
 (_SuchThat
 (_Member ?p (PRange ?template ?plow ?phigh))
 (_Member ?q (QRange ?template ?qlow ?qhigh)))

 (* (aref ?aname
 (row ?template

 (aref ?aname ?iter1 ?iter2) ?p ?q)
 (col ?template

 (aref ?aname ?iter1 ?iter2) ?p ?q))
 (w ?template (aref ?aname ?iter1 ?iter2) ?p ?q)))

In these definitions, the forms “?varname” are pattern
variables (i.e., generation-time variables) used by the AO
transformation system to hold portions of the evolving
program. The formal parameter sequences of these method
definitions may include so-called enabling condition
patterns that are often included via the “#.” Lisp reader
macro, (e.g., ArrayReference). These are reusable
patterns that in addition to providing a name for the
parameter, verify expected relationships between the
parameter and other domain specific entities (e.g., between
a and its iterators i and j). Enabling condition patterns also
typically check types and bind additional pattern variables
needed by the definitions. For example, PRange binds
?plow and ?phigh through a pattern (i.e., IATemplate-
instance) that matches s, then finds s’s P range iterator and
then binds the iterator’s low and high values of it to ?plow
and ?phigh.

The definitions of expression 4b rely on the following
pattern definitions. (Expression 5):

(setf ArrayReference
 ’$(por

$(pand (aref ?aname #.Iter1AndRange #.Iter2AndRange)
 $(bindconst ?acase 2D))

 $(pand (aref ?aname #.Iter1AndRange)
 $(bindconst ?acase 1D))))

(setf Iter1AndRange
’$(pand ?iter1
 $(psuch formals ?iter1

 - 4 - Copyright, Microsoft, 1998

(_Range ?i1low ?i1high))))
(setf Iter2AndRange

 ’$(pand ?iter2
 $(psuch formals ?iter2

 (_Range ?i2low ?i2high))))

(setf BackwardConvolutionOp-instance ’?op)

(setf ImagePixelReference
 ’$(pand #.ArrayReference
 $(plisp (IsDSType ?aname ’Image))))

(setf TemplateReference
 ’$(pand ?template

$(plisp (IsDSType ?template ’IATemplate))))

These patterns will recognize, among other things, a one
or two dimensional array reference of the form (aref a i)1

or (aref a i j) binding the array name (e.g., a) to ?aname,
the array’s iterator or iterators (e.g., i and/or j) to ?iter1
and ?iter2, the upper and lower end of each iterator’s
range to ?i1low, ?i1high, ?i2low, and ?i2high
respectively, and a tag (e.g., 2D) to ?acase to indicate the
specific form recognized.

In addition, Defcomponent replaces the instance
specifier s in a method’s formal parameter list with a
reusable pattern common to all instances of the class. This
pattern expresses the enabling conditions required by the
methods of s. For the class IATemplate, this pattern has
the form (Expression 6):

(setf IATemplate-instance
 ’$(pand ?self

 $(psuch dimensions ?self
((_Member ?piter

(_Range ?plow ?phigh))
 (_Member ?qiter

(_Range ?qlow ?qhigh))))))

which binds the particular instance of the IATemplate to
?self , binds the iterators generated for use by the instance
to ?piter and ?qiter, and finally, binds the low and high
values of the ranges of those iterators. All of these
bindings are now available for use by the method bodies.
The other patterns, viz. ImagePixelReference and
TemplateReference, perform similar checking and
binding services. Enabling conditions extend the notion of

1 (aref a i) is an internal form. The AO generator provides a viewer
that casts internal forms into a more intuitive publication form. (aref a i
j) is cast into a[i,j], prefix expressions are converted to infix, variables
that are internally stored as (*var* x) are cast into ?x and so forth. In the
example in the succeeding section, we will express the evolving example
in the publication form produced by the viewer.

a formal parameter list by recognizing that domain specific
design elements (e.g., a template or a pixel) are part of an
interrelated fabric of design information that describes
individual design elements and their inter-dependencies
and that is needed by the method definitions.

 The pattern matching engine is central to all of the
operations of the AO generator (e.g., the viewer, partial
evaluator, and the transformations). Pattern matching is
performed by a unification-based, fully backtracking
pattern matcher/inference engine with a user extensible
array of operators that include: an “and” operator requiring
that all of its patterns match the current data element (i.e.,
$(pand pat1 pat2 …)); an “or” operator requiring that at
least one of its patterns match (i.e., $(por pat1 pat2 …));
an operator to match the values of CLOS slots (i.e.,
$(psuch CLOSInstance Slotname Pattern)); an operator
to execute arbitrary Lisp code that can return bindings as
well as succeed or fail (i.e., $(plisp Lisp code …));
?variables, which match and bind the current data item
(e.g., ?iter1); an operator that binds a variable to the data
matched by an arbitrary pattern (e.g., $(bindvar var
Pattern)); an operator to bind a constant value to a variable
(e.g., $(bindconst ?acase 2D)), which is often used to
simplify later case logic; an operator to span over
uninteresting data items until it finds data of particular
interest, after which the intervening values are bound to a
variable (i.e., $(spanto Var Pattern)); an operator to bind
the remainder of a list (i.e., $(remain Var) ; an operator to
perform pattern matching on different data (i.e., $(pmatch
Pattern Data); an operator to perform a Prolog like cut,
thereby abandoning any remaining choices at the last
choice point (i.e., $(pcut)); an operator to recursively
perform matching using a pattern bound to a variable (i.e.,
$(pat Var)); and a fail operator to cause the matching to
backtrack to the last choice point (i.e., $(pfail)) and restart
the matching with the next choice. In addition, each
transformation used by the AO generator is written as a
pattern that matches and rewrites the expression tree. All
pattern matching and inference within the AO generator is
accomplished with this engine. While biased toward
structure-based pattern operations the engine has the
capability to perform Prolog like inferencing.

The following trivial example illustrates the
backtracking behavior of pattern matching given failure.
The first argument to the with-matching macro is the
pattern, the second is the data, the third is the initial
bindings (in this case, nil) and the remaining items are Lisp
expressions that are executed upon completion of the
pattern match. These expressions are wrapped with a Lisp
Let containing one Let variable bound to the final binding
of each ?variable. In this example, the Lisp Let variable x
will be bound to the final binding of ?x, in this case, nil.

 - 5 - Copyright, Microsoft, 1998

(with-matching
’($(spanto ?x g)
 $(plisp (print ?x) (terpri) t) $(pfail))

 ’(a b c g d e f g h i j g g) nil
 (print x) (print ’DONE))

This expression will print:
(A B C)
(A B C G D E F)
(A B C G D E F G H I J)
(A B C G D E F G H I J G)
nil
DONE

4. Compiling Domain Specific Expressions

4.1 Loop Fusion
The AO method is a multi-phase transformation

process. The first phase performs loop fusion on
expression 3 resulting in the following code.

for (i=0; i < m; i++) /*Expression 7*/
 for (j=0; j < n; j++)
 { t1 = bconv(a[i,j], s);
 t2 = bconv(a[i,j] sp);
 b[i,j] = sqrt(t1*t1 + t2*t2) }

Loop fusion is a multi-phase algorithm that walks the
AST (Abstract Syntax Tree) triggering transformations at
each subtree based on the pattern of the domain specific
operators, operands, and attributes on the nodes. These
transformations modify the tree in various ways. They may
map domain operators or operands into conceptually lower
level domain operator or operands (e.g., Image type a gets
mapped into a Pixel p and finally into an Integer a[i,j]).
They may create new variables for the generated code
(e.g., t1 and t2). They may adorn the subtree with
attributes that anticipate how the operators and operands
will be implemented (e.g., (_Q (∀p:(a[i:Integer,
j:Integer] :Pixel)) indicates that the pixel p will be
implemented as an array reference a[i, j] where i and j are
integers.). They may merge the adornments thereby fusing
loops or for another point of view, rewriting the
(anticipated) data flows implied by the domain specific
operators and operands. Merging tags is one method by
which AO anticipates optimizations in the target
implementations while deferring their actual execution.
Finally, they may reorganize the domain specific code to
foster improved optimizations in the generated
implementations.

The final pass of the loop fusion phase (the code
generation pass) converts the adornments or tags into the
appropriate loop forms and may perform various other
optimizations particular to this stage of processing (e.g.,
the reduction in strength optimization of the forms (expt
(bconv a[i,j], s) 2) and (expt (bconv a[i,j], sp) 2). What is

more, this transformation anticipates the possibility that at
some future point in the optimization process, one or more
instances of these expressions may simplify to a constant
thereby, creating the opportunity for constant folding. The
transformation embeds tags that anticipate these future
possible optimizations, a service that will be critical later
in the optimization process.

This anticipation is manifest as follows. When it
introduced the T1 and T2 assignment statements, it
introduced data flows into what had been a purely
functional expression (i.e., the right hand side of the
assignment). Future transformations will need to know
about these data flows, so it adds tags that records the data
flow dependencies. However, it also anticipates the
possibility that one of the expressions may eventually
reduce to a constant thereby providing the opportunity for
constant folding within the SQRT(T1 * T1 + T2 * T2)
expression. Hence, it adds the optimization tag

(_ON (MigrationIntoBlockOf ‘T1) (_SCHEDFOLDFLOWS))

to the T2 assignment and the tag

 (_ON (MigrationIntoBlockOf ‘T2) (_SCHEDFOLDFLOWS))

to the T1 assignment. Whenever the T1 or T2 assignments
get moved into the other’s block, _SCHEDFOLDFLOWS will
be awakened to check for the possibility of relocating the
SQRT(T1*T1 + T2*T2) expression and performing constant
folding. This opportunity will in fact occur in the example
we will examine and cause the creation of the degenerate
leg b[i, j] = 0 seen in expression 2. We will come back to
this subject later in the example.

The loop fusion phase is treated in greater detail in [4]
and we will not consider it further in this paper. We will
start with expression 7 and follow its evolution into the
final code (expression 2).

4.2 Composite Folding
The next phase of processing, composite folding, inlines

the methods of the various composite structures (e.g., IA
templates) and executes the transformations in the tags
distributed over the domain specific expression. In the
course of this execution, certain optimization events (e.g.,
substitution of an expression or migration of an expression
into a particular context) may trigger other so-called event-
driven or opportunistic optimizations (e.g., transformations
like zero folding, promotion of code above loops, moving
context expressions into if-then-else forms, etc.).
Optimization re-planning may be triggered along the way
causing old optimization tags to be altered or new ones to
be added.

Some optimization planning tags were added to the i, j
loop during code generation phase of the loop fusion,
notably

(_CF (->bconv(a[i,j], s)) (->bconv(a[i,j] sp)))

 - 6 - Copyright, Microsoft, 1998

(_PromoteAboveLoop J (ConstantExpressionOf I))
(_PromoteToTopOfLoop J (ConstantExpressionOf J))

where the notation “->” implies a direct reference to the
convolution expressions within the AST. The first of these
tags will trigger composite folding (_CF) of the two
referenced expressions, which inlines method definitions,
simplifies the resulting code, and finally, attempts to share
code across the subexpressions. The latter two tags
anticipate the opportunity to promote common index
expressions of i (e.g., (i - 1)) above and outside the inner
loop controlled by j, and expressions of j to the top of but
inside the loop controlled by j. If the loops generated from
the bconv expressions get unrolled, these promotion
transforms will trigger and otherwise they will not. We will
follow _CF’s operation in some detail starting with the
optimizations of the subexpression bconv(a[i,j], s).

Basically, the local optimization phase of _CF is a process
of inlining the definitions of bconv and the methods of s,
and executing any AO generated or pre-positioned
optimization tags. The definition used for the bconv
expression is the body of the PixelXTemplate method of
the BackwardConvolutionOp class (see expression 4b),
which the AO viewer will present in a modestly more
readable form (Expression 8)2

T1 =
 (_SUM (?P ?Q)
 (_SUCHTHAT
 (_MEMBER ?P (PRANGE S ?PLOW ?PHIGH))
 (_MEMBER ?Q (QRANGE S ?QLOW ?QHIGH)))
 (A[(ROW S A[I,J] ?P ?Q),(COL S A[I,J] ?P ?Q)]
 * (W S A[I,J] ?P ?Q)))

The domain expert who wrote this component and
entered it into the reuse library anticipated the possibility
that the loops over ?p and ?q might be profitably unrolled
and therefore, attached two optimization tags to the loop:

(_ON CFWRAPUPEND
 (_UNWRAPIFSMALLCONSTANT ?P |?PHIGH - ?PLOW |)

(_ON CFWRAPUPEND
 (_UNWRAPIFSMALLCONSTANT ?Q |?QHIGH - ?QLOW |)

These are event-driven optimization tags that will only
be triggered when _CF posts the CFWRAPUPEND event,
which is the point just after any integration of
subexpression code has been accomplished and just before
_CF returns. This is the _CF phase in which clean up
transformations perform their work. Except for the
transformations that perform the promotion of the constant
expressions of i and j, these will be the last
transformations to fire for the example.

2 The fully upper case representation of the following expressions is a
side-effect of cutting and pasting mechanically generated intermediate
data structures into the paper.

While not shown in Expression 4b, the definition of the
W method of S also has some tags that anticipate possible
optimizations. The “if” test in W identifies the special case
where the template s (and analogously sp) are partly
hanging off the edge of the image and it is dependent only
upon the image parameters (i.e., i, j, m and n) but not the
target program variables that will be bound to ?p and ?q.
Thus, it need not be recalculated for each iteration of any
loop over ?p or ?q and therefore, can be moved outside of
any such loop. This is anticipated by the tag

(_ON SUBSTITUTIONOFME
 (_PROMOTECONDITIONABOVELOOP ?P ?Q))

which triggers anytime the if statement gets substituted
into a new context. It will attempt to promote the condition
outside of any loop of ?p and ?q by incorporating that
loop into the then and else clauses.

A second tag attached to the if statement

(_ON CFWRAPUP (_MERGECOMMONCONDITION))

anticipates that this special case test might be common
across subexpressions and therefore, could be shared.
Since this opportunity will not occur until after local
optimizations within the separate subexpressions have run
their course, this optimization it not triggered until _CF
posts the event CFWRAPUP, which is the point in time _CF
allows code sharing optimizations across subexpressions.

If the if statement does indeed get promoted outside of
any loops controlled by ?p and ?q, the component
developer anticipates that the “then” and “else” clauses
will get substituted into some new expression contexts,
providing additional optimization opportunities. For
example, substituting zero typically provides an
opportunity for simplification. Hence, the developer
attaches to the zero on the then leg the tag

(_ON SUBSTITUTIONOFME (_FOLD0))

If and when this transformation gets triggered, it will eat
up the expression tree eventually simplifying away
everything up to and including the loop in which it occurs.
This transformation is key to formation of the b[i,j] = 0 in
expression 2.

Similarly, the substitution of the if-then-else expression
on the else leg opens up the opportunity for incorporation
of its new context into the if-then-else expression. Thus,
the developer attaches the following tag to the else leg:

(_ON SUBSTITUTIONOFME (_INCOPORATECONTEXT))
Now, let us inline the definitions of the Row, Col, and

W methods and follow the optimization process.

4.3 Composite Folding Optimizations
The specifics of the IA templates are completely

defined WITHIN s and sp. In particular, the size of the

 - 7 - Copyright, Microsoft, 1998

point set neighborhood (i.e., the ranges of ?p and ?q),
must be defined by s and sp, not by the context in which
they are used. Therefore, whenever an IA Template is
created by DSDeclare, two iterators are automatically
created to be used by any code that wishes to iterate over
that neighborhood. These iterators will become target
program variables. Such iterators are typically represented
by gensym symbols such as piter536 and quiter538 but
for simplicity of exposition, we will call them simply p and
q. When we inline Row, Col, W, QRange and PRange,
these iterators will be bound to the pattern variables ?p
and ?q, respectively. Inlining these various method
definitions causes expression 8 to become Expression 9
(ignoring the T1 assignment for the time being):

(_SUM (P Q)
 (_SUCHTHAT
 (_MEMBER P (_RANGE -1 1))
 (_MEMBER Q (_RANGE -1 1)))
 (A[(I + P) , (J + Q)] *
 (IF ((I == 0) || (J == 0) || (I == (M - 1)) || (J == (N - 1)))
 THEN 0
 ELSE IF ((P != 0) && (Q != 0)) THEN Q
 ELSE IF ((P == 0) && (Q != 0)) THEN (2 * Q)
 ELSE 0))

Since we have just substituted W’s body, the
transformation that will try to promote the special case test
outside of the loop of P and Q (i.e.,
_PROMOTECONDITIONABOVELOOP) will be triggered and
will immediately run into difficulty. It is within an
arithmetic expression which prevents it from fulfilling its
enabling conditions. Nevertheless, it does know that there
is another transformation (_INCOPORATECONTEXT) that
(under the appropriate conditions) may be able to
incorporate the arithmetic expression into the then and else
legs of the if. It triggers this transformation, which
transforms expression 9 into Expression 10:

(_SUM (P Q)
 (_SUCHTHAT
 (_MEMBER P (_RANGE -1 1))
 (_MEMBER Q (_RANGE -1 1)))
 (IF ((I == 0) || (J == 0) || (I == (M - 1)) || (J == (N - 1)))
 THEN A[(I + P) , (J + Q)] * 0
 ELSE (A[(I + P) , (J + Q)] *

 (IF ((P != 0) && (Q != 0)) THEN Q
 ELSE IF ((P == 0) && (Q != 0)) THEN (2 * Q)
 ELSE 0))))
Now, _PROMOTECONDITIONABOVELOOP can complete its
work, further transforming this into Expression 11 (with
the _SUCHTHAT clause elided to conserve space):

(IF ((I == 0) || (J == 0) || (I == (M - 1)) || (J == (N - 1)))
 THEN (_SUM (P Q) …A[(I + P) , (J + Q)] * 0)
 ELSE (_SUM (P Q) …A[(I + P) , (J + Q)] *

 (IF ((P != 0) && (Q != 0)) THEN Q

 ELSE IF ((P == 0) && (Q != 0)) THEN (2 * Q)
 ELSE 0))))

Notice that this transformation has just made two
substitutions that will trigger the _FOLD0 transform on the
zero within the then leg and the _INCOPORATECONTEXT
transform on the weight expression within the else leg.
_FOLD0 creates Expression 12:

(IF ((I == 0) || (J == 0) || (I == (M - 1)) || (J == (N - 1)))
 THEN 0
 ELSE (_SUM (P Q) …A[(I + P) , (J + Q)] *

 (IF ((P != 0) && (Q != 0)) THEN Q
 ELSE IF ((P == 0) && (Q != 0)) THEN (2 * Q)
 ELSE 0))))
and _INCOPORATECONTEXT creates Expression 13
(reintroducing the enclosing T1 assignment into the
example because we are about to need it):

(T1 = (IF ((I == 0) || (J == 0) || (I == (M - 1)) || (J == (N - 1)))
 THEN 0
 ELSE (_SUM (P Q) …

 (IF ((P != 0) && (Q != 0))
 THEN (A[(I + P) , (J + Q)] * Q)
 ELSE IF ((P == 0) && (Q != 0))

 THEN (A[(I + P) , (J + Q)] *(2 * Q))
 ELSE 0)))))
At this point, _CF finds no more local optimizations that
can trigger so it posts the CFWRAPUP event which signals
the start of cross expression optimizations. The other
subexpression (T2= (BCONV A[I,J] SP)) proceeded
through a parallel series of transformations and by the time
of the CFWRAPUP event, it has the form (Expression 14):
(T2 = (IF ((I == 0) || (J == 0) || (I == (M - 1)) || (J == (N - 1)))
 THEN 0
 ELSE (_SUM (P Q) …

 (IF ((P != 0) && (Q != 0))
THEN (A[(I + P) , (J + Q)] * P)

 ELSE IF ((P != 0) && (Q == 0))
 THEN (A[(I + P) , (J + Q)] *(2 * P))

 ELSE 0)))))
When the CFWRAPUP event gets posted, the
_MERGECOMMONCONDITION transform will fire but it is
unable to satisfy its enabling conditions because the two
merge candidates are both embedded within assignment
statements. Like the _PROMOTECONDITIONABOVELOOP
transformation, _MERGECOMMONCONDITION invokes
_INCOPORATECONTEXT transformation which succeeds in
moving both T1 and T2 assignments inside the if-then
statement thereby establishing the necessary enabling
conditions for _MERGECOMMONCONDITION to execute.
The sum of these two transforms produces Expression15:

(IF ((I == 0) || (J == 0) || (I == (M - 1)) || (J == (N - 1)))
 THEN (T1 = 0; T2 = 0)
 ELSE (T1 = (_SUM (P Q) …

 (IF ((P != 0) && (Q != 0))

 - 8 - Copyright, Microsoft, 1998

 THEN (A[(I + P) , (J + Q)] * Q)
 ELSE IF ((P == 0) && (Q != 0))

 THEN (A[(I + P) , (J + Q)] *
 (2 * Q))

 ELSE 0)))
(T2 = (_SUM (P Q) …
 (IF ((P != 0) && (Q != 0))

 THEN (A[(I + P) , (J + Q)] * P)
 ELSE IF ((P != 0) && (Q == 0))

 THEN (A[(I + P) , (J + Q)] *
 (2 * P))

 ELSE 0))))
Recall that when the two temporary assignments were

generated, the transform recorded the data flow
information of T1 and T2. In addition, it tagged each with
an expression like

(_ON (MigrationIntoBlockOf `T1) (_SCHEDFOLDFLOWS))

In fact, _MERGECOMMONCONDITION has just migrated the
assignment expressions of T1 and T2 into each other’s
block. At this point, _SCHEDFOLDFLOWS wakes up and
checks its enabling conditions. Assignments for both T1
and T2 must be present at all sources of the data flow to
allow relocation of the B[I, J] = SQRT(T1*T1 + T2*T2)
expression to the source point of each data flow. Further,
the right hand side of at least one of the assignments must
have simplified to a constant. Otherwise, there is no point
to moving the B[I, J] assignment because no constant
folding would be possible. These enabling conditions are
all met in expression 15 and _SCHEDFOLDFLOWS
produces Expression16:

(IF ((I == 0) || (J == 0) || (I == (M - 1)) || (J == (N - 1)))
 THEN (B[I,J] = 0)
 ELSE (T1 = (_SUM (P Q) …

 (IF ((P != 0) && (Q != 0))
 THEN (A[(I + P) , (J + Q)] * Q)
 ELSE IF ((P == 0) && (Q != 0))

 THEN (A[(I + P) , (J + Q)] *
 (2 * Q))

 ELSE 0)))
(T2 = (_SUM (P Q) …
 (IF ((P != 0) && (Q != 0))

THEN (A[(I + P) , (J + Q)] * P)
 ELSE IF ((P != 0) && (Q == 0))

 THEN (A[(I + P) , (J + Q)] *
 (2 * P))

 ELSE 0))
 B[I, J] = SQRT(T1*T1 + T2*T2)))

Now, _CF can proceed no further, so it posts the
CFWRAPUPEND event which will trigger the
optimization tags

(_ON CFWRAPUPEND (_UNWRAPIFSMALLCONSTANT P 2)
(_ON CFWRAPUPEND (_UNWRAPIFSMALLCONSTANT Q 2)

and this will cause the two loops to be unwrapped, which
with partial evaluation produces Expression17:
(FOR (I=0; I<M; I++)
 (FOR (J=0; J<N; J++)

 (IF ((I == 0) || (J == 0) || (I == (M - 1)) || (J == (N - 1)))
 THEN (B[I,J] = 0 ;)
 ELSE
 (T1= ((A[(I + 1) , (J + 1)] - A[(I + 1) , (J -1)] +

 (A[I , (J + 1)] * 2) - (A[I , (J -1)] * 2) +
 A[(I -1) , (J + 1)] - A[(I -1) , (J -1)]))
 T2 = ((A[(I + 1) , (J + 1)] + (A[(I + 1) , J] * 2) +

 A[(I + 1) , (J -1)] - A[(I -1) , (J + 1)] -
 (A[(I -1) , J] * 2) - A[(I -1) , (J -1)]))

 B[I,J] = SQRT(T1*T1 + T2*T2))))))
Upon return from _CF, the two promotion

transformations

(_PromoteAboveLoop J (ConstantExpressionOf I))
(_PromoteToTopOfLoop J (ConstantExpressionOf J))
are triggered resulting in expression 2.

4.4 Reasoning Over the Optimization Plan
Suppose that one wants to compile expression 1 for a

SIMD (Single Instruction/Multiple Data stream) machine,
specifically the Pentium II with MMX instructions. AO
exhibits a singular advantage in such cases because AO
can reason over the abstract optimization plan (as well as
the program and domain specific information) to
accomplish this purpose. How would this happen for the
given example?

The MMX instructions provide the ability to perform
vector operations such as parallel add, multiply, and sum
of products on two, four, or eight data items at a time.
Thus, the optimization plan must reform the target
program so that the data (e.g., the image array a and the
weights of s and sp) are expressed as data vectors. The
way that the AO generator accomplishes this is by re-
planing the optimization at the outset so that the
optimization phases (and composite folding in particular)
will be dealing with components that have a different
optimization plan.

In short, the reasoning proceeds as follows. Upon
discovering the two _UNWRAPIFSMALLCONSTANT tags on
the ?p and ?q loops, the MMX re-planning transformation
recognizes that loop unwrapping would prevent taking
advantage of the MMX architecture and so, replaces these
tags with (_ON CFWRAPUPEND (_MMXLOOP)) which will
retain the loop structure so that it can be restructured in an
MMX friendly way. Next, it recognizes that MMX
instructions can only be exploited if W of s and W of sp
can both be turned into data vectors, ideally at generation
time but failing that, at run time. Therefore, it sets about to
re-tag W of s and W of sp to accomplish this.

 - 9 - Copyright, Microsoft, 1998

To accomplish this, it must 1) keep the body of the W’s
atomic and not let them be merged into other code, 2) get
rid of conditional tests that might interfere with vector
operations, 3) create temporary storage for the data vectors
of s and sp and 4) initialize the data vectors, hopefully at
generation time rather than execution time. Because of
goal 1, the transformation replaces the tag (_ON
SUBSTITUTIONOFME (_INCOPORATECONTEXT)) with the
tag (_ON SUBSTITUTIONOFME (_MAPTOARRAY)) which
will prevent the integration of outside context, cause the
temporary vector storage to be allocated and generate the
initial values for the vectors. Now, it tries to eliminate the
special case conditional by splitting the i, j loop into
separate loops for the differ cases, one for each disjunct
(e.g., i==0 && j ∈ [0:(n-1)]). These loops will be followed
by a final loop for the general case (i.e., (i ∈ [1: (m-2)])
&& (j ∈ [1: (n-2)])). Operationally, this generates one loop
each to plug zeros into the border elements of the four
sides followed by a loop to process the inside elements of
the image. With that, the special case test completely
disappears. The enabling conditions for this reasoning are
1) recognize that i and j are loop control variables for
some loop in which W of s (and W of sp) will be
embedded, 2) recognize that W of s (and W of sp) are not
dependent on the loop control variables that iterate over
the pixel neighborhood (i.e., ?p and ?q) and 3) recognize
that the disjuncts of the special case test (e.g., (i==0) or
(i==(M - 1))) belong to a category of predicates that modify
ranges and thereby can be reasoned over by the specialized
loop reasoning rules. Once the enabling conditions are
determined acceptable, the transformation replaces the
_PROMOTECONDITIONABOVELOOP tag with the tag (_ON
CFWRAPUPEND (_SPLITLOOPONCASES)). When this
transformation actually triggers (during _CF processing) it
will form separate i, j loops for each disjunct on the then
leg and a final general case loop for the else leg.
Operationally, for the special case loops,
_SPLITLOOPONCASES generates separate copies of the i, j
loop and adds a different disjunct into the _SUCHTHAT
clause. For the general case, it generates a loop copy and
adds the negation of the full condition into the
_SUCHTHAT clause. Then, for each loop, it invokes a set of
specialized rules that are designed to recalculate ranges to
eliminate the predicates just added. The rules are typified
by the following:

Fixed Index: (∀(?i, ...othervbls...) (?i ∈ [?Low:?High])
(?i==?c) ...otherterms...) : ?body) & (constant ?c) →
(∀...othervbls... ...otherterms...: (substitute ?body ((?i ?c)))

The fixed index rule looks for some loop variable (e.g., ?i)
that is asserted to be equal to some ?c (e.g., (?i==?c))
where ?c is a constant. If found, the loop is modified to
eliminate iteration over ?i and ?c is substituted for ?i in the
loop body. This turns a loop like {∀i,j (i ∈ [0:(m-1)]) (j ∈

[0:(n-1)]) (i==0) : b[i,j] = 0 } into one like {∀j (j ∈ [0:(n-1)]) :
b[0,j] = 0 }. Similar rules are used to clip the ends of ranges
or otherwise manipulate the loop ranges. In the case of
compiling expression 1 for _MMX, the fixed index rule
(above) is used to modify each of the four special case
loops and the range clipping rule is used four times to
produce the general case loop thus, putting the general
case loop into a form in which _MMXLOOP will succeed in
restructuring the loop’s body into an MMX friendly form.

It is worth repeating that this reasoning is performed
over the abstraction optimization plan (i.e., the tags) before
any optimizations are actually executed. This allows the
reasoning logic to reason more globally about the
optimization plan tags and their interdependencies. For
example, the several separate optimization goals are subtly
interdependent – e.g., preventing loop unwrapping,
vectorizing W of s and sp (accomplished by
_MAPTOARRAY), and eliminating case logic within W of s
and W of sp by splitting the i, j loop on the cases, and
finally, the reformulating the body of the i, j loop into an
MMX friendly form (accomplished by _MMXLOOP).
Reasoning is simplified by separating it from optimization
execution, treating optimizations in the abstract (i.e., using
tag names), reasoning about the global tag
interdependencies, and including program and domain
knowledge.

5. Related research
There is a variety of related research that aims to solve

the same or a similar problem or uses similar techniques.

5.1 Generation systems
The Draco program generation system shares the

domain oriented optimization philosophy of AO, but while
it does perform many powerful domain specific
optimizations, it does not use AO-like optimization
methods or distributed optimization plans for melding and
reweaving portions of the code (e.g., loop prefixes). [11,
12] To accomplish similar optimizations, Draco would
face a large solution search space or need to resort to
programmer intervention and guidance.

Aspect Oriented Programming (AOP) shares with AO
the intention and the accomplishment of reweaving code
for efficiency. [9] The main difference appears to be that
in AOP the optimization plan is a centralized a reweaving
algorithm and in AO the plan is factored into a set of
separate optimization plan pieces that are distributed over
the program in the form of annotation tags. Only when
they are brought together through the integration of the
reusable program parts does a complete optimization plan
exist. This factoring means that the individual optimization
pieces are themselves reusable over many past and future
reusable code components.

 - 10 - Copyright, Microsoft, 1998

Other generation methods are largely orthogonal but
complementary to the AO aspect of the generation
problem. [2, 14]

5.2 Conventional optimization techniques
Each of the optimizations that I have discussed in the

AO method have their analogs in the conventional
programming language domain [1] with the fundamental
difference being that AO achieves the optimizations
directly on the domain specific forms without deep
program analysis. Conventional optimization, on the other
hand, must recover the flow and dependency information
via complex analysis techniques that induce large, open-
ended searches. Further, conventional optimization often
misses opportunities for optimizations because of the
difficulty of the associated inference problems (e.g., alias
analysis). AO avoids such difficulties by recasting the
problem into a form handled by simpler and more effective
methods.

The optimization techniques used in APL [7] perform
loop fusion like optimization on their built-in data types
but provide no way to achieve similar optimization on
domain specific types that are not built-in.

5.3 Other transformational approaches
Other transformational approaches are often based on

some set of general (i.e., not domain specific)
technological underpinnings such as functional
programming, partial evaluation [8], lazy transformations,
or particular transformation algorithms. A good example
of this class is the Deforestation technique of Wadler [15],
which uses a set of transformations to remove intermediate
computational forms in a functional programming context,
i.e., remove temporary lists and trees.

Such transformation systems emphasize broad
generality in the application domain and it is unclear what
negative effects such generality will have on the solution
search space. Often, the use of just a little domain specific
information can vastly simplify the solution search space.
But beyond questions of the size of the search space,
general optimization techniques are unable to provide the
architecture specific variations possible with the domain
specific transformations of AO. For example, custom
compiling expression 1 for an MMX architecture or a
particular display accelerator board would not be possible
with broadly general techniques. There is no way to escape
the need for domain specific transformations to capture the
architecture specific translation techniques required by
those target architectures.

6. Conclusions
For domain analysis to profitably provide operators and

operands that have the ability to both combinatorially
amplify programming productivity and provide high

performance code, we have to provide optimization
strategies that can automatically localize code without
engendering the huge search spaces of conventional
optimization and transformation methods. Anticipatory
Optimization is designed to accomplish this task

7. References
[1] David F. Bacon, Susan L. Graham, and Oliver J. Sharp, Compiler

Transformations for High-Performance Computing, ACM
Surveys, Vol. 26, No. 4, December, 1994.

[2] Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas,
Scalable Software Libraries, Symposium on the Foundations of
Software Engineering. Los Angeles, CA, December, 1993.

[3] Ted J. Biggerstaff, The Library Scaling Problem and The Limits of
Concrete Component Reuse, International Conference on Software
Reuse, November, 1994.

[4] Ted J. Biggerstaff, Anticipatory Optimization in Domain Specific
Translation, International Conference on Software Reuse, June,
1998a.

[5] Ted J. Biggerstaff, A Perspective of Generative Reuse, Annals of
Software Engineering, 1998b.

[6] Ted J. Biggerstaff, Composite Folding in Anticipatory
Optimization, Microsoft Research Technical Report, 1998c
(forthcoming).

[7] L. J. Guibas and D. K. Wyatt, Compilation and Delayed Evaluation
in APL, Fifth ACM Symposium Principles of Programming
Languages, pp. 1-8, 1978.

[8] Neil D. Jones, An Introduction to Partial Evaluation, ACM
Computing Surveys, Vol. 28, No. 3, Sept. 1996.

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maede,
Cristina Lopes, Jean-Marc Loingtier and John Irwin, Aspect
Oriented Programming, Tech. Report SPL97-08 P9710042, Xerox
PARC, 1997.

[10] S. Letovsky, E. Soloway, Delocalized Plans and Program
Comprehension, IEEE Software, May, 1986.

[11] James M. Neighbors, Software Construction Using Components,
Ph.D. Dissertation, Univ. of Calif. at Irvine, 1980.

[12] James M. Neighbors, Draco: A Method for Engineering Reusable
Software Systems. In Ted J. Biggerstaff and Alan Perlis (Eds.),
Software Reusability, Addison-Wesley/ACM Press, 1989.

[13] G. X. Ritter and J. N Wilson, Handbook of Computer Vision
Algorithms in Image Algebra, CRC Press, 1996.

[14] Douglas R. Smith, KIDS—A Knowledge-Based Software
Development System, in Automating Software Design, M. Lowry
& R. McCartney, Eds., AAAI/MIT Press, 1991.

[15] Philip Wadler, Deforestation: Transforming Programs to
Eliminate Trees, Journal of Theoretical Computer Science, Vol.
73, pp. 231-248, 1990.

