
Directions in Software Development and Maintenance

Ted J. Biggerstaff

Microsoft Research

One Microsoft Way

Redmond, WA 98052-6399

tedb@microsoft.com

Abstract

Development environments are entering a period of

dramatic change. A major component of this change is a

reorientation toward domain driven development

environments including an integration of domain oriented

support tools. This reorientation will bring about a

decline in the role of conventional programming

languages and at the same time, force an evolution

toward more abstract programming representations --

more abstract in the sense that most of the

implementation details (as we know them today) will be

abstracted away. Thus, development is moving farther

away from conventional software engineering models and

closer to the problem.

Key Words and Phrases: Abstraction, CASE,

development environments, domain model, problem

oriented languages, program generators, representation,

visual programming.

1. Introduction

In a recent paper [1], I described the significant reuse

benefits that accrue from forms designers, fourth

generation languages and interface development tool kits.

These tools provide high levels of reuse through domain

oriented (often visual) programming techniques. It was

clear to me that mainstream programming, was evolving

in this direction. What I failed to realize was just how fast

this evolution was occurring and how sophisticated such

tools have become in the last year or so.

I was surprised recently when I sat down to use one

such system on a personal desktop computer. In a matter

of a few hours, I learned enough about the system to

produce a simple application with a sophisticated interface

that included drop down menus for the application

functionality; pop up panels for selecting options;

standard interaction panels for reading, writing and

printing files; a whole set of control buttons plus

functionality for manipulating sets of items; list boxes

with scroll bars for displaying the items; and much more.

A few short hours more and I could have had a

sophisticated relational data base built into my

application.

Most of this interface was built by graphically cutting,

pasting, grouping and editing the reusable components.

This was "clip-art" style programming. The total number

of lines of real code that needed I had to write was less

than 550 and perhaps 10% of that was written by the

system for me. This code provided the functionality for 6

menu items, 11 pop up panels, 50 buttons and data

selectors, 2 item lists with scroll bars, 2 text editing boxes

and 3 file dialog boxes. It probably would have taken me

weeks to build as sophisticated an application from

scratch, even if some of the items were available as

reusable classes, in the main because of the extra effort

needed for integration, coordination and testing.

I was familiar with such tools on workstations. They

had always struck me as useful but clumsy and hard to

use, mostly because of the difficulty associated with the

integration of the output of the tool and the rest of the

application. Too much manual integration effort was

required. Not so with the more recent tools. The tool I

used managed everything for me and when I wanted to test

my application, I just hit the run button.

This experience brought home the message that the

world of development and maintenance is starting to

change very fast. I believe that development environments

are entering a period of transition that will change their

character dramatically over the next decade. This change

is composed of several distinct technology changes:

• Domain reorientation: Programming

representations and environments are shifting

from software engineering theoretic viewpoints

to domain oriented viewpoints, thereby allowing

greater levels of reuse.

Conference on Software Maintenance-93 - 2 - Draft

• Representational abstraction: Program

representations will become more abstract

avoiding implementation commitments where

ever possible. This will foster increased reuse by

eliminating more and more of the reuse limiting,

concrete component details.

• Declining role of programming languages:

Conventional programming languages will be

used in a support role and the representation of

programs will include more extra-linguistic

details that support the generation of the

implementation details.

• Domain driven integration of tools: Many of

the useful CASE tools of today will be integrated

with the development tools, but integrated

through domain oriented conceptual models

rather than software engineering conceptual

models.

The first three changes enhance the programmer's

ability to reuse components thereby, improving the

efficiency of the development and maintenance process,

and the quality of the resulting software. The last change

is really an engineering consequence of the domain

reorientation.

2. Domain reorientation

2.1. The nature and consequences of the change

There are really two interrelated aspects to domain

reorientation: 1) a shift in viewpoint and 2) a change in

enabling technology. The shift in viewpoint concerns what

concepts and relationships provide the most effective

foundation for programming. The change in enabling

technology concerns whether one builds programs by

constructing linguistic forms or whether one builds

programs by graphical construction.

For many years programming and software engineering

have depended upon a broad general foundation and

consequently, their representation tools are best suited for

working with small scale structures, e.g., integers, strings,

functions, etc., which provide relatively little

programming leverage. That is, like gates in hardware, it

takes a lot of them to construct a large application. Thus,

conventional programming languages and software

engineering theories are well designed for constructing

small, intricate, non-standard, hand crafted parts.

However, the representation problem is more than a

simple matter of scale or grain size. Programming

languages and software engineering representations are

organized along a different conceptual dimension or

viewpoint from the domains that they deal with. While the

framework of programming languages and software

engineering is built from highly general entities and

relationships (which are the small grained structures

mentioned earlier), the framework of the problem domain

is built from highly domain specific entities such as

panels, icons, buttons, etc. and relationships such as

provides values for, enables, changes value, etc. (which

are the large grained structures). The difference in the

conceptual dimension or viewpoint means that it is a long

leap from programming languages and software

engineering representations to the representation of

problem entities and relationships that we are actually

dealing with.

This programming language or software engineering

viewpoint leads to a highly operational view of the

software. That is, developers tend to focus on data flows

between variables, calls between functions, and in general,

operations that are close to the operational level of the

machines upon which the programs are to run. This

operational myopia tends to obscure the domain level

operations.

Object oriented systems have improved on this state of

affairs by increasing the grain size and hiding many of the

inconsequential programming level details, but more

importantly, by introducing a view of the software (i.e.,

the class hierarchy) that begins to deviate from the purely

low level, operational point of view. That is, classes begin

the to shift toward focusing on problem entities,

relationships and operations. But object oriented systems

still expose many of the programming details and split the

programmer's attention between the problem domain

objects and relationships, and all of the programming

details that are required to implement them. Even when

classes are reused in black-box style reuse, the

programmer must be aware of many of the low level

operational characteristics of the classes because they

show through and can introduce bugs [2]. Thus, object

oriented languages are not, in and of themselves, domain

oriented although they may enable limited domain

orientation. They still fall short of the goal of allowing a

programmer to operate strictly in terms of problem

domain entities and relationships.

We get a true domain orientation if we shift all of the

way to POLs (Problem Oriented Languages), although

POLs introduce their own particular difficulties (e.g.,

domain integration). They also have the same language

oriented drawbacks as conventional programming

languages, object oriented languages and software

Conference on Software Maintenance-93 - 3 - Draft

engineering tools. Their enabling technology is language

based and that makes programming harder than it need be.

Forming coordinated sets of abstract linguistic expressions

seems intellectually harder than cutting and pasting

domain level, visual components that evoke deep levels of

domain intuition.

Furthermore, the one dimensional (string-based)

character of conventional text languages (programming or

POLs) aggravates the problem. For example, text

languages require abstruse nesting of brackets, braces or

parentheses just to express simple, direct relationships

such as, inclusion.

So clearly, shifting the viewpoint toward domain based

objects and relations simplifies the programming job. But

if we are also willing to change the enabling technology to

a two dimensional form, then there is an opportunity to

perform domain oriented programming without many of

the compromises that language based enabling

technologies promote. This changes the programming job

from one of composing abstract linguistic expressions that

distantly relate to one's domain objects and relationships

to one of assembling graphic parts that directly evoke the

concept of the domain objects and relationships.

Thus, the kind of domain reorientation that I envision is

one in which both the viewpoint is shifted and the

enabling technology is changed. This style of domain

reorientation arises when the programming representation

scheme is visually tailored to a specific problem domain

by mapping the domain entities and their relationships into

a visual metaphor that captures those entities and

relationships in obvious, natural graphical forms. Each

domain entity has an iconic representation that naturally

evokes the concept of the domain entity the icon defines

(e.g., the use of an icon that looks like a control button to

represent an actual control button on a user interface).

Similarly, the relationships among the domain classes

(e.g., a button that provides services for a dialog panel)

are usually mapped into graphical relationships such as

graphical inclusion or juxtaposition.

But visual domain reorientation implies more than a

passive visual representation of the program. It also

generally implies that the development process has

become one in which the visual representation of the

program is directly manipulated by the programmer to

effect development of or change to the evolving program.

In a sense, the abstract visual model is the program. The

real operational program, to the degree that it is different

from the visual model, is typically invisible to the

programmer.

In a sense, domain reorientation is saying that

developing, maintaining and understanding domain

specific applications is better achieved through models

expressed in terms of the domain concepts and their

interrelationships than by models expressed in terms of

programming oriented connections and flows within the

program. And in the case where the domain concepts and

relationships are represented graphically, the

programming process is shifted away from one that is

language oriented toward one that is manipulation

oriented. That is, the programmer spends less time writing

linguistic forms and more time constructing compositions

of graphical problem domain objects.

The good news is that domain orientation significantly

enhances reuse. This enhancement arises because the

narrowness of the domain focus reduces the number of

components that need to be created to populate a reuse

library and increases the probability that any given

component in that library will be reused.

2.2. An example

A good example of the domain reorientation in

development systems (and therefore, a good example of a

successful reuse system) is the Microsoft Visual BasicTM

development system [3]. It provides a visual design

metaphor that allows the user to construct most of an

application's user interface, database management system

interface, windows/operating system services,

communications services and device services via a process

that is mostly cutting and pasting of domain oriented icons

(e.g., text boxes, lists, dialog boxes, images, command

buttons, timers, and many others). With each icon comes

a set of reusable management software that provides the

run-time behavior for the particular kind of object

Not only are the nature and structure of the building

blocks determined by the problem domain but the

organization of the software and the support tools (e.g.,

navigation aids and editors) are determined by the

structure of the domain, not by a software engineering

view of the software. There is no mechanism for

presenting CASE-like design views of a Visual Basic

application. However, there are quite sophisticated

mechanisms for showing the design in problem oriented,

visual design metaphor terms. In fact, the design screens

resemble the run-time time screens as closely as feasible1.

And objects that are graphically close or related in the

design view are organizationally and navigationally close

1So much so, that occasionally one forgets that he is looking at a

design and tries to click a button for effect.

Conference on Software Maintenance-93 - 4 - Draft

in the framework of the software. For example, in a panel

design view, the code that manages a particular button

click event can be accessed by double clicking on the

button itself.

The Visual Basic operating metaphor is an event-driven

model. In order to handle the events, the user writes small

Basic functions that handle each of the events that he

cares about. These functions perform much of their work

by manipulating the properties of the icons (e.g., causing a

panel to appear on the display by setting the "visibility"

property of the panel to true). Such property

manipulations are themselves events that evoke run-time

behaviors.

2.3. Why now?

Many of the concepts and ideas in Visual Basic are not

new. They have appeared in other similar systems before.

What is new is that they are now part of the desktop

computing mainstream and have been evolved to a level

of operational sophistication and integration with other

tools that previous attempts have not. Why has this

happened now? What are the factors that have allowed or

fostered this transition?

Certainly, the market has been a precipitating factor

due in some measure to the desktop revolution, which has

made the development of such systems economically

feasible. For years, segments of the profession

programming community have been searching for ways to

produce simple applications, prototypes and one-offs

more quickly and cheaply. And for those whose

applications fit the profile of applications with heavy user

interface, common stereotypical architectures (e.g.,

database-centric) and small amounts of additional logic,

Visual Basic and systems like it provide a solution. While

eventually probably 80% of the applications written will

fall into this expanding profile, there will always be a

small percent of custom applications that just do not lend

themselves to such tools. So, while we can expect that the

domain revolution will be sweeping, it will never be

complete. Nevertheless, we can expect that it will indeed

represent the mainstream of application development in

the course of the next decade.

But the advent of the domain reorientation needed

more than just market pressures to arise now. It also

needed sufficiently mature supporting technologies. It

would not have been possible in a few short years to both

work out from scratch an understanding of the needed

technologies and also develop a product that incorporated

that understanding. The user interface metaphor, for

example, had to be sufficiently understood and evolved. It

had to evolve through the test tube of the last twenty years

in order to select out the important, consistent and useful

ideas of the windows metaphor. Further, developers had to

understand how to engineer the parts and pieces of such

applications, and their run-time support. For example, it

would be impossible to invent a database interface before

the architectures of database management systems were

understood, experimented with and used over a period of

years.

But Visual Basic and similar products of today are only

the start of the domain reorientation. Today there are only

a few domains that are technologically mature enough and

have evolved visual metaphor conventions for their

domains. Today's technologies that fit this pattern are user

interface designers, DBMS interfaces, electronic forms,

OS services and device services. Tomorrow there will be

many more including transaction-like electronic forms,

mail, groupware, telephony, digital communications,

multimedia, etc. The market must grow sufficiently large

to make development of the underlying technology

profitable and the technology areas must mature to the

point where feasible architectures are well understood.

The main open problems in domain reorientation are

engineering problems -- engineering of specific domains

so that they can be included in subsequent, expanded

domain oriented development systems.

3. Representation abstraction

 Domain reorientation provides improved reuse, more

directly understandable program representations and more

efficient construction systems. At first glance, it would

seem that the domain reorientation has pretty much solved

many of our development and maintenance problems.

And indeed, we can expect that domain orientation will

provide profitable improvement for many years to come.

However, it does have certain weaknesses that define the

next research problems to be worked on.

The shortcomings of domain oriented programming

are:

• Coverage: It covers only a part of needed

programming activities.

• Scale: Handling large scale programs (i.e.,

hundreds or thousands of KLOCs) becomes

difficult.

• Run-Time properties: The run-time properties

(e.g., performance) of the components are fixed

because the components are concrete.

Conference on Software Maintenance-93 - 5 - Draft

Eventually, we can expect that domain oriented

programming will be the method of choice for perhaps as

much as 80% of all programming. However, it is likely

that there will always be some portion of programming

that is pushing the state-of-the-art in one or more areas

and therefore, does not lend itself to domain oriented

programming. Examples within today's world are:

1) high performance graphics, which is constantly

reinventing itself in conjunction with evolving

hardware devices, and

2) the merging of the telephone, the personal

computer, the fax machine, the pager and the

television, which is an area that is still defining

itself.

In both of these cases, the hardware and therefore, the

software architectures are likely to be completely revised

several times in the next few years as the market place

defines what is salable and the engineers define what is

buildable.

 Scale is a knotty problem to domain oriented systems

but one that can be incrementally resolved through the

improvements in hardware that are already aggressively in

progress. We can expect constant improvement in this

area as the price/performance of computer memories, hard

disks and rewritable CD's improves. Of course, there will

also be some Parkinsonian effect in that the need will

always grow to exceed the capacity. But the problems that

software can solve in this area are proportionally much

less significant than those that hardware can solve.

The first two problem areas (coverage and scale) are

largely a matter of engineering invention driven by market

needs. There are no sweeping research breakthroughs

required to solve these problems. Their solution is more a

matter of evolution than revolution. However, the last

problem -- run-time properties -- needs revolutionary

insights.

The fixed, concrete nature of the components typically

used by domain oriented development systems reduces the

reuse benefits through compromising the operational

characteristics of the components. Sometimes, it prevents

the use of domain oriented systems altogether.

Consequently, there is an open research problem -- find

representations that allow increased levels of abstraction

over those found in today's programming languages. In

other words, find representations for reusable components

that allow many of the operational characteristics to be

deferred until reuse time.

3.1. Limitations of representation

Why should concreteness have such a deleterious effect

on reuse? Because concrete representational forms require

implementation oriented details that are needed by the

compiler but could be deferred until later in the design

process. Worse, premature introduction of implementation

details (which often represent arbitrary design choices

made in the absence of definitive requirements) precludes

many opportunities for reuse. How often have you heard

"I should be able to reuse this component but it is just too

slow (or large, or a variety of other factors) for my

application." More often than not, such reasons are

perfectly valid and a potential reuse is lost because

concrete, implementation details have been introduced too

early -- before the opportunity for reuse, not after.

This premature introduction of implementation details

is a direct result of the representations available for

expressing reusable components -- conventional

programming languages. Today's programming languages

are largely concrete and therefore, make abstraction

difficult and limit its form and degree. Let us consider the

modes of abstraction that are available to the builder of a

reuse library -- classes (e.g., in Smalltalk or C++), macros

(e.g., in C) , generics (e.g., in Ada) and templates (as

described in [5] or as defined in the C++ language).

Classes are conventionally thought of as abstractions

and that term is even applied as a synonym for object

oriented classes. But classes are implementation-oriented

components. Their detailed algorithms are chosen and

although hidden, these show through to the application in

terms of their performance, size, error handling design,

memory management schemes, etc. [2]. That is, the

information may be hidden but the implementation

properties show through and it is these properties that can

have great (generally, negative) effect on the reusability of

the components. So, while object orientedness is highly

beneficial to reuse, it imposes built-in limits on the degree

to which objects may be reused and thereby, on the

expected payoff through reuse. OK, what about macros?

Macros certainly have the potential to be powerful

tools but they are limited by the design considerations of

the languages in which they are embedded. That is,

programming languages are designed according to

principles that are somewhat antithetic to reuse. Take C

for example. The language was designed to allow the

maximum flexibility to the programmer not the maximum

abstract-ability of the code. So macros in languages like C

are quite limited and have little to offer as a representation

for reuse.

Conference on Software Maintenance-93 - 6 - Draft

As an example of the key limitations of macros in

languages like C, consider the requirements of generative

reuse architectures. Generative reuse architectures often

conditionally generate alternative code streams based on

the inferred type of, or on a declared property of a data

item, and typically, they apply such conditional generation

recursively. C macros allow neither capability let alone

allow it to be applied recursively. Consequently, while

quite useful, C-like macros are far too limited as a reuse

representation candidate.

Generics (as in Ada) and templates (as in C++) add a

powerful level of abstraction over simple macros because

they allow components to be parmeterized on data types

but they too fall short of our abstraction needs. They do

not allow highly abstract components to vary based on

properties that fall outside of the type system. For

example, consider two coupled design decisions -- the

choice of the implementation data structure for a very long

strings (i.e., choosing between an array versus linked list

implementation) and the choice of the substring search

algorithm (e.g., choosing between a linear search versus

Knuth-Morris-Pratt algorithm)2. The performance

consequences can be onerous if the choice of

implementation data structure and the choice of search

algorithm are made independently, without considering

the performance interactions3. Therefore, when I am

choosing the implementation data structure for the string, I

would like to be able to have my generation algorithm test

the implementation property of the string search algorithm

(i.e., is it linear search or KMP) and under some

conditions to revise the choice of search algorithm. Types

are not a good way to encode that information but extra-

linguistic properties associated with the program are and

this is the way Draco [4] deals with this kind of

abstraction problem.

3.2. Expectations

In conclusion, if reuse is to escape the bounds of

concrete representations it must include the ability to

develop a rich representation of the target program that

goes beyond today's programming languages (e.g., allows

arbitrary extra-linguistic properties on any structure) and

2This example is due to Jim Neighbors.

3The advantage of the KMP search algorithm arises out of the ability

to avoid comparisons for many substrings (i.e., the ability to jump over

some substrings) within the long search string. A linked list

implementation eliminates most of this advantage and makes

sequencing through the strings an expensive operation.

allows general manipulation and reorganization of the

program at the level of Draco.

If implementation details are truly deferred in reusable

components, then the control skeletons of many low level

algorithms within those components (e.g., the string

search algorithm from the earlier example) may not exist

in any concrete form at the time that the component is

entered into a reuse library. The control structures and

their details may only be generated in concrete form when

the component is reused within a specific application

context. In short, abstract representations that can truly

defer implementation details must by necessity be coupled

to powerful generation systems that can derive much of

the detail concrete structure with only a minimal

involvement from the user. And it is only by such

abstraction and generation that reuse can surpass the

limitations that currently restrict its payoff.

4. Declining role of conventional

programming languages

4.1. The effect of domain reorientation

As noted earlier, the character of development

environments and processes of the last few decades has

been driven by the conceptual model of conventional

programming languages. For example, many popular

design representation schemes (e.g., Booch diagrams) are

abstractions of programming language-like structures.

Similarly, the separation of the design and coding

processes is a consequence of the fact that programming

languages require so much concrete detail for large

programs that the process of creating and organizing a

program needs to be broken down into separate steps.

Ideally, the first step (i.e., design) creates broad, abstract

structures and the second step (i.e., coding) fills in the

details.

In the next decades, the role of conventional

programming languages will diminish driven by the

growth of problem domain oriented design systems and

the forces of abstraction. Conventional programming

languages are not going to disappear. It is just that their

dominant role will be passed to the domain oriented

design systems. Programming languages will no longer be

the main determiners of the nature of development

environments and the associated processes. They will be

used in a subordinate role to fill in the details of the

application frameworks that are provided by the problem

domain design systems.

Conference on Software Maintenance-93 - 7 - Draft

From a process point of view, the application

frameworks supplied by the problem oriented design

systems represent a pre-constructed, abstracted application

design. In a sense, they are a pre-cooked, generalized

design that is the analog of a conventional design. And the

run-time support that comes with them means that much of

the coding of that broad, abstract design structure that we

call high level design has already been completed. The

only coding left is the details of the application's

computation.

Visual Basic and similar systems provide an example

of this phenomena. The user written functions that manage

events are often less than 10 or 20 lines of code and no

additional code need be written to integrate them into the

rest of the application. Integration is automatic as a

consequence of the event-driven framework and the

supporting run-time event manager.

4.2. The effect of abstraction

I also expect that nature of programming will change in

that some of the information (e.g., the commitment to

implement a string as an array) that was incorporated

directly into algorithms written in conventional

programming languages will be supplied in extra-

linguistic ways to tools that generate those implementation

details.

For example, many implementation details like the

choice of arrays versus linked lists will not be made by the

programmers directly but will be generated after the fact

from the abstractions supplied by the programmers. Thus,

detailed algorithmic steps that are predisposed to one or

another implementation form (e.g., incrementing an array

index or getting the next list item) will be abstracted away.

When the programmer writes the code for a string search

it will likely be a call to a generic search routine. Exactly

which algorithm the generator finally chooses for that

search will depend on the specific type of the data

structure (much like conventional generic functions) but in

addition, it may also depend on properties that exist

outside of the programming language type system (e.g.,

requirements that imply the need for high search

performance and characteristics that are consistent with a

KMP style of search).

This shift toward generation based on the use of

information from outside of the programming language

defers the choice of implementation details and thereby,

allows optimizations in implementations to be generated

later in the development process -- at the time a

component is incorporated into an application rather than

at the time the component is incorporated into the reuse

library. Consequently, we can expect:

• highly general components that are more broadly

reusable (in contrast to the concrete components

of many of today's libraries),

• accelerated development with fewer defects

(which is a consequence of better reuse), and

• improved operational properties of the generated

applications (e.g., hand tuned performance).

5. Domain driven evolution of CASE

Today's CASE tools suffer from a lack of conceptual

integration with the development environments that are

used to create the target programs. For example, while

CASE representations are often connected to their target

program's code by some level of automation, the

connection is clumsy at best. Sometimes the code

representation is included in the CASE design model but it

often is little more than a physical embedding of code with

little if any simplification or benefit gained from it.

Operationally, in such cases, it is clear that two distinct

representations are present (i.e., the CASE design model

and the code) and the user must explicitly deal with both

of them. For example, some CASE tools allow the

programmer to design elements of his target program's

user interface but then require that he explicitly generate

the user interface code and manually integrate that code

with the remainder of his application. It is not clear that

the developmental effort is really simplified or decreased

by such connections.

The straightforward approach to this problem would be

an attempt to do a better engineering job in the integration

of CASE tools with development environments. But such

an approach would still be based on programming

language and software engineering models of

development. It would not address the integration of the

domain oriented models. There is a large mental leap from

software engineering representations to problem domain

representations because these two representations are

organized along differing conceptual dimensions. When

the programmer scales up from software engineering's fine

grained, general entities and relationships to the large

grained, specialized entities and relationships of the

problem domain, there is a paradigm shift. It is not just a

matter of moving from smaller to larger. There is a

fundamental shift in the way the program knowledge is

organized and structured, and in the way in which the

programmer deals with that knowledge. Consequently, the

major challenge in CASE tools and development

environment integration, is finding representations and

Conference on Software Maintenance-93 - 8 - Draft

operating regimes that emphasize the domain model and

allow the programmer to operate completely from the

problem point of view.

So, the question is what will the integration of CASE

tools and the development environment look like in a ten

years? I believe that the visual domain oriented

programming systems of today provide a clue. The

integration will have the following characteristics:

• There will be a single, integrated representation

of the program and it will be the only

representation that is visible to the programmer4.

• It will be organized around a domain oriented

framework.

• It will support visually based, direct manipulation

of the domain oriented program representation.

In other words, I am suggesting that CASE tools will be

reinvented. They will merge with or evolve into problem

oriented design editors that today implement a cut-and-

paste style of programming. The difference between a

program and its design will be largely invisible to the

programmer. The programmer will be able to access what

ever programming details are necessary to implement, test

or change the program but other details will be invisible.

Further, the problem domain oriented visual metaphor will

be the program's design and the programmer will

understand the program abstractly in terms of the visual

metaphor.

This prediction implies an evolution toward

specialization into multiple visually oriented domains.

Like the clip art we can expect to see "clip domains" that

can be loaded into visual design editors and merged in the

context of a cut-and-paste style of programming. This will

require all of the other changes we have discussed in order

to allow domains to be painlessly integrated and to allow

the implementation details to be correctly generated.

Certainly, there have been previous efforts at

integration of program representations (e.g., requirements,

design and code), often around the definition of a general

repository, and these efforts have not been highly

successful. Why should I expect such an integration to

succeed now? There are two main reasons: 1) there is a

different, more problem relevant model driving the

integration and 2) the technologies in the domain areas are

sufficiently mature to force the integration. In the past, the

repository was the general model around which the

4We mean single representation in the context of a given set of tools

, not a single standard for all of the world. There will almost certainly be

a small number of such standards during this evolutionary change.

integration was defined and the varied contents of the

repository were often sketchily defined and little more

than placeholders (i.e., technological details to be added

here.) Today, the details of a number of key domains have

been worked out, in the sense that the details of design

tools, APIs (Application Program Interfaces), run-time

support software and so forth exist. This kind of

concreteness provides a place to start with the model

definition.

6. Conclusions

Perhaps the single most sweeping change will be

wrought by the domain reorientation that changes the

developer's conceptual model, changes the entities and

relationships that the developer is dealing with, changes

the enabling construction technology, and moves the

developer farther away from the coding details. In short, it

moves the developer farther away from conventional

programming development and closer to the problem.

7. References

1. Ted J. Biggerstaff, Microelectronics and Computer

Technology Corporation, "An Assessment and Analysis of

Software Reuse," in Advances in Computers, Vol. 34,

Academic Press, 1992.

2. Lucy Berlin, "When Objects Collide," OOPSLA, 1990.

3. Microsoft Visual BasicTM Programmer's Guide, Version

3.0, Microsoft Corporation (1993).

4. James M. Neighbors, "Draco: A Method for Engineering

Reusable Software Systems," in Software Reusability,

Addison-Wesley/ACM Press, 1989.

5. Dennis Volpano and Richard B. Kieburtz, "The Templates

Approach to Software Reuse,"

 in Software Reusability, Addison-Wesley/ACM Press,

1989.

