
Program Understanding and the Concept Assignment Problem

Ted J. Biggerstaff

Microsoft Research

and

Bharat G. Mitbander and Dallas Webster

Microelectronics and Computer Technology Corporation (MCC)

ABSTRACT

A person understands a program because he is able

to relate the structures of the program and its

environment to his conceptual knowledge about the

world. The problem of discovering individual human

oriented concepts and assigning them to their

implementation oriented counterparts for a given

program is the concept assignment problem. We argue

that the solution to this problem requires methods that

have a strong plausible reasoning component based on

a priori knowledge. We illustrate these ideas through

example scenarios using an existing design recovery

system called DESIRE.

1. Human understanding and the concept

assignment problem

A person understands a program when he is able to

explain the program, its structure, its behavior, its

effects on its operational context, and its relationships

to its application domain in terms that are qualitatively

different from the tokens used to construct the source

code of the program. That is, it is qualitatively different

for me to claim that a program "reserves an airline

seat" than for me to assert that

 "if (seat = request(flight)) && available(seat)

 then reserve(seat,customer)."

Apart from the obvious differences of level of detail

and formality, the first case expresses computational

intent in human oriented terms, terms that live in a rich

context of knowledge about the world. In the second

case, the vocabulary and grammar are narrowly

restricted, formally controlled and do not inherently

reference the human oriented context of knowledge

about the world. The first expression of computational

intent is designed for succinct, intentionally ambiguous

(i.e., informal), human level communication whereas

the second is designed for automated treatment, e.g.,

program verification or compilation. Both forms of the

information must be present for a human to manipulate

programs (create, maintain, explain, re-engineer, reuse

or document) in any but the most trivial way.

Moreover, one must understand the association

between the formal and the informal expressions of

computational intent.

If a person tries to build an understanding of a

unfamiliar program or portion of a program, he or she

must create or reconstruct the informal, human oriented

expression of computational intent through a process of

analysis, experimentation, guessing and crossword

puzzle-like assembly. Importantly, as the informal

concepts are discovered and interrelated concept by

concept, they are simultaneously associated with or

assigned to the specific implementation structures

within the program (and its operational context) that

are the concrete instances of those concepts. The

problem of discovering these human oriented concepts

and assigning them to their implementation instances

within a program is the concept assignment problem

[4] and we address this problem in this paper.

2. The concept assignment problem

2.1. Programming Oriented Concepts vs.

Human Oriented Concepts

A central hypothesis of this paper is that a parsing-

oriented recognition model based on formal,

predominately structural patterns of programming

language features is necessary but insufficient for the

general concept assignment problem. While parsing-

oriented recognition schemes certainly play a role in

program understanding, the signatures of most human

oriented concepts are not constrained in ways that are

convenient for parsing technologies. (See Sidebar on

Automatic Concept Recognition) So there is more to

program understanding than parsing. In particular,

there is the general concept assignment problem, which

requires a different approach.

More specifically, parsing technologies lend

themselves nicely to the recognition of programming

CACM Submission - 2 - CACM May 1994/Vol. 37, No. 5

oriented concepts (e.g., numerical integration, searches,

sorts, structure transformations, etc.), because they are

easily understood almost completely in terms of the

patterns of their algorithms (i.e., numerical

computation and data manipulation steps).

On the other hand, human oriented concepts such as

acquire target or reserve airplane seat are decoupled

from the formal patterns of their algorithms because

they involve an arbitrary semantic mapping from

operations expressed on numbers and data structures to

computational intentions expressed in terms of domain

concepts (e.g, a target or a seat). There is no algorithm

(or, equivalently, no set of inference rules) that allow

us recognize these concepts with complete confidence.

Is this difference just a manifestation of a layers of

abstraction model, in which the higher level

abstractions are defined in terms of the lower level

abstractions? Can we

just write deterministic

rules relating the

layers? Observations of

humans trying to

understand programs

suggest that this is not

the case. It appears that

there is truly a

paradigm shift between

programming oriented

and human oriented

concepts. There is a

change both in the kind

of features that must be

used to recognize the two kinds of concepts and the

nature of processing required. Programming oriented

concepts are signaled by the formal features of the

programming language or other features that can be

deductively or algorithmically derived from those

features (e.g., variable liveness or data flow properties)

while human concept recognition appears to

additionally use informal tokens, require plausible

reasoning and rely heavily on a priori knowledge from

the specific domains. Thus, concept assignment is

more like a decryption problem than a parsing

problem.

In the remainder of the paper, we will give an

example of this paradigm shift, in which we use a

priori knowledge to drive the assignment of human

oriented concepts and focus upon how tools, both naive

and intelligent, can aid in that process.

3. An Example

In trying to assign concepts to code, one has two

general tasks:

1) identify which entities and relations are really

important, and

2) assign them to known (or newly discovered)

domain concepts and relations.

The first task relies heavily on generic formal

information (e.g., data structures, functions, calling

relations, etc.) plus some informal information such as

grouping and association clues. The second task relies

more heavily on domain knowledge, e.g., knowledge

of the problem domain entities and typical program

architectures.

We consider the example C definitions in Figure 1

to see how we can identify concepts in code. The

example is taken from a multi-tasking window system

[1] written in C. These definitions constitute the set of

data items necessary to handle breakpoint processing

within a debugger. We will examine what can be

plausibly inferred about this set of statements without

any knowledge of the application domain context (i.e.,

task 1) and then what additional knowledge can

plausibly be inferred given knowledge of the

application domain context (i.e., task 2).

For task 1, we use generic knowledge to infer that

these statements are related to each other in some non-

casual way, because

1) they are grouped together (proximity),

2) bracketed with blank lines,

3) exhibit a strong surface similarity among many of

the formal and informal tokens (e.g., breakpoint,

brkpts, breakcs, etc.), and

<BLANK LINE>

 unsigned char brkpts [MAXPROCS] [MAXBRKS]; /*Bytes to be restored at bkpts*/

 unsigned char *brkat [MAXPROCS] [MAXBRKS]; /*Locations of set break points*/

 unsigned int nbrkpts [MAXPROCS]; /*Number of breakpoints set for a process*/

 int breakpoint; /* No of task hitting breakpoint*/

 unsigned int breakcs, breakip; /*Address of breakpoint*/

 unsigned int breakflags; /*Flags register value at breakpoint*/

 unsigned int breakss, breaksp; /*Top of stack within breaker routine.

 Points to saved registers.*/

 unsigned int current_ip, current_cs; /*Current instruction address*/

<BLANK LINE>

Figure 1 : A Code Example That Illustrates Data Grouping

CACM Submission - 3 - CACM May 1994/Vol. 37, No. 5

4) exhibit coupling via common tokens among

several definitions (e.g., coupling via

MAXPROCS and MAXBRKS).

Based on these features, we can tentatively assign the

generic concept data-group to them, indicating that

taken as a set, they are likely to be an instance of some

(currently unknown) application domain data concept.

Further, we expect that this data-group concept is a

composite of some set of strongly related, detailed data

subcomponents that are signaled by individual

programming language tokens defined in the example.

Presumably, at some time during the recognition

process, the specifics of which particular application

data concept we assign will be (plausibly) inferred

from accumulated evidence.

For task 2, we assign the data-group and its

subcomponents to domain specific concepts, utilizing a

priori domain specific knowledge such as illustrated

informally in Figure 2. The file drawers represent data

stores, the ellipses functions, the arrows data/control

flows and the text blocks other concepts such as

debugging events. This is a fuzzy model, in that all

concepts and relationships are weakly constrained,

thereby allowing the model to cover a wide variety of

concrete designs. We believe that a person with

expertise in breakpoint processing must possess a

model similar to this.

This model expresses one way in which debuggers

typically handle breakpoints. That is, when the user

asks for a breakpoint to be setup at a specific address,

the original code at that address is saved in the

debugger's data area and then it is replaced by code that

will generate an interrupt when executed. That

interrupt is how the debugger gets control back from

the program being debugged (i.e., the target program).

Immediately after regaining control, the debugger

replaces the interrupt command byte with the original

target program code, thereby returning the target

program to its original form. At this point, the user

would see exactly the same code as he originally wrote,

which is what he expects.

How might a knowledgeable user relate this model

to specific instances of the concepts in a program under

analysis? What features might he use to make the

concept assignments? Let us start with the recognition

of the data store concepts (e.g., the Locations of

breakpoints concept.)

Features that suggest concept assignments are:

1) natural language token meanings,

2) occurrences of closely associated concepts,

3) individual relations paralleling those in the model,

and

4) the overall pattern of relationships

in the model.

We illustrate each such feature in our

example.

Certain natural language tokens --

words, phrases and abbreviations -- are

features of (i.e., signal a likely reference to)

the breakpoint-data concept (e.g.,

"breakpoint," "brkpts," and "brkat"), while

others signal possible references to

concepts that are closely associated with

the breakpoint-data concept (e.g, the

concepts address, registers, instruction,

process and task). Finding evidence of these

associated concepts adds evidence to the

possibility that "breakpoint," "brkpts,"

"brkat" and so forth are indeed signaling a

reference to the concept breakpoint-data.

Further evidence might be provided by

the used_by relations between these data

items and some previously assigned

breakpoint processing function(s) (e.g., some known

breakpoint processing function that uses brkpts,

breakpoint, brkat or nbrkpts). For example, the user

might already know about:

LocationsLocations

Code BytesCode Bytes

Breakpoints# Breakpoints

Setup breakpoints

 command

Save code
bytes & store
 int 3

Restore bytes

at locations

Interrupt

Service

Routine

Interrupt

Event

int 3

int 3

int 3

Target
Program

Figure 2 : A Model of Breakpoint

Processing in Debuggers

CACM Submission - 4 - CACM May 1994/Vol. 37, No. 5

• bpint3, which handles the actual breakpoint

interrupt;

• set_breaks & set_brkpt, which together replace

bytes of target program code with hardware

interrupt code bytes (i.e., breakpoint interrupt

bytes) and save the original code bytes in the table

brkpts and their addresses in brkat; or

• restore_breaks and restore_brkpt, which together

replace the hardware interrupt code bytes with the

code bytes that were originally in the target

program before the breakpoints were set.

If the user has already proposed concept

assignments to any of these functions (e.g., bpint3),

then these concept assignments add weight to the

evolving assignments associated with the data-group.

On the other hand, the concept assignment could occur

in the reverse order with breakpoint-data concept

assigned first. In this case, association of the

breakpoint-data concept with this data-group would

serve as evidence for the subsequent concept

assignments of bpint3, set_breaks, restore_breaks and

so forth.

4. Concept Assignment Tools and

Scenarios

4.1. Automated Assistance

Based upon our hypothesis about the underlying

nature of the concept assignment problem, we have

built a Design Recovery system called DESIRE [2,3]

that is designed to be a program understanding

assistant. DESIRE contains both naive and intelligent

facilities to assist the user in attacking the concept

assignment problem. The naive assistant facilities

assume that the user is the intelligent agent and provide

simple but computationally intensive services to

support that intelligence.

The intelligent assistant facilities include a Prolog-

based inference engine and a knowledge-based pattern

recognizer called DM-TAO (Domain Model - The

Adaptive Observer). These are more experimental and

attempt to provide a limited amount of intelligent

assistance in assigning concepts.

In this section, we will use scenarios to examine

how such assistant tools can be (and have been) used to

foster, simplify and accelerate the concept assignments

in the previous example.

4.2. Scenario 1: Suggestive Data Names as First

Clue

In this scenario, we suppose that a user is browsing

the global data of some unfamiliar program and

discovers the breakpoint data group of Figure 1. Let us

further assume that this user has the domain knowledge

that is illustrated in Figure 2. Under this scenario, the

names "brkpts", "brkat" and "nbrkpts" along with their

associated comments should suggest candidate concept

assignments. In particular, brkpts is a potential instance

for the Code bytes data store, brkat for the Locations

data store and nbrkpts for the # Breakpoints data store.

The next logical step is to explore the functions that

use these globals to try to identify the functional units

Save code bytes ... and Restore bytes Our user

forms a query that asks for a Germ1 browser view of

all of the functions that use these global variables along

with all of the call chains to these functions, resulting

in the view shown in Figure 3.

These results reveal several strong candidates

(set_brkpt, set_breaks, restore_brkpt and

restore_breaks) for assignment to the save/set and

restore concepts. He would now examine the source

code to verify these tentative assignments and

discovery that the evidence is strong enough to assign

the two "set" routines to the Save code bytes ... concept

and the two "restore" routines to the Restore bytes ...

concept.

1 Germ (Graphical Entity-Relation Modeller) is a generalized

schema driven viewer with a great deal of hypertext functionality.

Figure 3 : Germ View of Use/Call Graph

CACM Submission

However, he is still in the dark about the breakpoint

Interrupt Service Routine and the S

concept, i.e., the user-driven interface

function that triggers the saving of the

breakpoints. Since interrupt service routines

are invoked by the hardware, it would not

have turned up in the call chains. But

interrupt routines do communicate with the

rest of their application via global data.

Further, our target routine will be related

(indirectly, perhaps) to the interesting

functions and global data that we have

discovered so far. Thus, our user needs a

way to search for global variables and

functions loosely related to the current set of

interesting functions and data. In DESIRE,

this is accomplished by reques

program slice2 [6] that is based on the set of

currently interesting program entities.

DESIRE's Slicer does more than generate

static views. It is a highly interactive tool

that allows slices to be rapidly generated,

extended, contracted and shifted based on a (typically

shifting) set of currently interesting program entities

called the interest set. It also includes a powerful

operations for finding and combining interest sets.

In our example, the user might start with an interest

set that includes the functions and global data so far

assigned (i.e., restore_brkpt, restore_breaks, set_brkpt,

set_breaks, nbrkpts, bkpts and brkat) and generate a

slice based on these interests. Figure 4 shows part of

2Roughly speaking, a slice for a variable is all of the statements

that affect the value of the variable. There are several variations on

this available.

Figure 4 : Slicer's View of Part of mdebug Code

 - 5 - CACM May 1994/Vol. 37, No. 5

However, he is still in the dark about the breakpoint

and the Setup...

driven interface

function that triggers the saving of the

t service routines

are invoked by the hardware, it would not

have turned up in the call chains. But

interrupt routines do communicate with the

rest of their application via global data.

Further, our target routine will be related

he interesting

functions and global data that we have

discovered so far. Thus, our user needs a

way to search for global variables and

functions loosely related to the current set of

interesting functions and data. In DESIRE,

this is accomplished by requesting a

[6] that is based on the set of

currently interesting program entities.

DESIRE's Slicer does more than generate

static views. It is a highly interactive tool

that allows slices to be rapidly generated,

based on a (typically

shifting) set of currently interesting program entities

called the interest set. It also includes a powerful

operations for finding and combining interest sets.

In our example, the user might start with an interest

set that includes the functions and global data so far

assigned (i.e., restore_brkpt, restore_breaks, set_brkpt,

set_breaks, nbrkpts, bkpts and brkat) and generate a

re 4 shows part of

Roughly speaking, a slice for a variable is all of the statements

that affect the value of the variable. There are several variations on

the slice generated.

The slice introduces several new global variables

because of the conditional branch that leads to the call

to restore_breaks in mdebug. And all of these new

global variables play a part in breakpoint processing.

The flag breakpoint triggers the operation that restores

the code bytes (i.e., Restore... concept) and the others

(e.g., breakcs, breakip and breakflags

breakpoint's state. Inclusion of these variables in the

slice, will also bring in bpint3

interrupt service routine -- because it uses these global

variables to communicate with the main part of the

debugger.

Elsewhere in mdebug (not shown in diagram), the

user finds the code that calls set_breaks, and it is

embedded within logic that interprets the user's debug

commands. That is, mdebug is the assignment for the

Setup breakpoint command

discovery, all of the key concepts have been assigned

to specific program concepts thereby, providing a

framework for further detailed analysis of the code,

involving human interpretation.

Figure 5 : Germ Browser Call Graph

Figure 4 : Slicer's View of Part of mdebug Code

CACM May 1994/Vol. 37, No. 5

The slice introduces several new global variables

because of the conditional branch that leads to the call

to restore_breaks in mdebug. And all of these new

global variables play a part in breakpoint processing.

triggers the operation that restores

concept) and the others

breakflags) are part of the

breakpoint's state. Inclusion of these variables in the

slice, will also bring in bpint3 -- the breakpoint

because it uses these global

variables to communicate with the main part of the

Elsewhere in mdebug (not shown in diagram), the

user finds the code that calls set_breaks, and it is

gic that interprets the user's debug

commands. That is, mdebug is the assignment for the

 concept. With this

discovery, all of the key concepts have been assigned

to specific program concepts thereby, providing a

er detailed analysis of the code,

involving human interpretation.

Figure 5 : Germ Browser Call Graph

CACM Submission

4.3. Scenario 2: Patterns of Relationships as

First Clue

Another approach to program analysis is

to try to identify the clusters of related

functions and data that form an abstract

overview of the program. We call these

clusters modules, to distinguish them from

files, classes, objects, or other formal

programming language structures.

How might one go about trying to

discover such a framework in a language

such as C? Much of DESIRE's tool set and

methodology is designed to support the

identification of such modules. Sometimes

module clusters depend upon domain

specific knowledge but often the module

structures are revealed by more generic

program features, such as

• Functions that are coupled by shared

global variables, or

• Functions that are coupled by shared

control paths.

Suppose that our user is searching for functional

clusters based on shared control paths, that is a set of

functions that are tightly bound because all call paths

to them contain a single function, called the

Our debugging example contains just such a cluster

Figure 6 : Results of Cluster Analysis

 - 6 - CACM May 1994/Vol. 37, No. 5

Scenario 2: Patterns of Relationships as

Another approach to program analysis is

to try to identify the clusters of related

nctions and data that form an abstract

overview of the program. We call these

, to distinguish them from

files, classes, objects, or other formal

How might one go about trying to

discover such a framework in a language

such as C? Much of DESIRE's tool set and

methodology is designed to support the

identification of such modules. Sometimes

module clusters depend upon domain

en the module

structures are revealed by more generic

Functions that are coupled by shared

Functions that are coupled by shared

Suppose that our user is searching for functional

clusters based on shared control paths, that is a set of

functions that are tightly bound because all call paths

to them contain a single function, called the dominator.

Our debugging example contains just such a cluster

where the dominator is "mdebug." Why might our user

suspect that this is a cluster?

Perhaps he notices a suggestive call graph pattern of

functions that appear connectively isolated except for a

rich set of connections to mdebug. (See Figure 5.) So,

our user runs a cluster analysis with mdebug as the

dominator. The results are shown in

Figure 6.

The functions found include the set

and restore functions from scenario 1, but

also a number of functions

unassembling machine instructions (e.g.,

unassemble and decode), another set for

reading and parsing user commands (e.g.,

readcmd and parseaddr) and others for

dumping information (e.g., dumpwords).

Further exploration will suggest

additional candidates for inclusion based

on functions that are conceptually related

to the debugger.

At this stage, the user asks that this

clustering relationship be recorded as a

(new) module and an aggregate node is

created in the DB. This new module node

groups these functions so that they can be

dealt with as a unit. Typically, the user

will want to simplify some other

Figure 7: Module View of the System

Figure 6 : Results of Cluster Analysis

CACM May 1994/Vol. 37, No. 5

where the dominator is "mdebug." Why might our user

Perhaps he notices a suggestive call graph pattern of

functions that appear connectively isolated except for a

ch set of connections to mdebug. (See Figure 5.) So,

our user runs a cluster analysis with mdebug as the

dominator. The results are shown in

The functions found include the set

and restore functions from scenario 1, but

also a number of functions involved in

unassembling machine instructions (e.g.,

unassemble and decode), another set for

reading and parsing user commands (e.g.,

readcmd and parseaddr) and others for

dumping information (e.g., dumpwords).

Further exploration will suggest

candidates for inclusion based

on functions that are conceptually related

At this stage, the user asks that this

clustering relationship be recorded as a

(new) module and an aggregate node is

created in the DB. This new module node

s these functions so that they can be

dealt with as a unit. Typically, the user

will want to simplify some other

Figure 7: Module View of the System

CACM Submission - 7 - CACM May 1994/Vol. 37, No. 5

graphical view, so he would collapse (i.e., hide) all of

these functions temporarily inside this new module

node.

 The user could proceed with other cluster analyses

and eventually assign each function to some module.

This allows him to get an module-based overview of

the system. See Figure 7. These cluster results can be

used in other tools -- the browser, query engine or the

Slicer.

It should be clear from these scenarios that concept

assignment benefits from a wide variety of naive tools

for viewing, analysis and query. The detailed nature

and usage of these tools are heavily influenced by the

style of the investigators. However, the central

invariant requirement is that the tools provide the

mechanism for creating opportunistic associations and

juxtapositions of information. Now, let us show how it

is possible for the machine to play a more intelligent

support role.

4.4. Scenario 3: Intelligent Agent Provides First

Clue

Another approach would be for our user to ask DM-

TAO -- DESIRE's experimental intelligent assistant for

concept assignment -- to scan the code and present a

list of candidate concepts based on the knowledge

represented in its domain model (DM)

knowledge. The results are used to glean

a rough sense of the conceptual highlights

of the code being studied or to serve as

focal points for further investigation

using the naive tools described in earlier

sections.

The current version of DM-TAO can

provide several kinds of insights into the

source code:

• Conceptual Highlights: Look for all

instances that correspond to any

concept in the DM;

• Conceptual grep: Look for

instances of a user-specified concept;

and

• Identification: Propose a concept

assignment for the currently selected

code.

In our example, the user might start with a search of

type 1 to perform a broad sweep of the code looking

for important concepts. This will find breakpoint-

data, DM's name for the model shown in Figure 2. The

user could then ask to see the specific code associated

with that concept and TAO would present the code

from Figure 1 in a window. At this point, the user may

need to understand the breakpoint-data concept in

greater detail and so he selects the line in which brkat

is declared and asks TAO to suggest a concept

assignment for the selection (a type 3 query). As shown

in Figure 8, TAO infers that the selection is an instance

of the breakpoint-location concept, which is the DM's

internal name for the Locations of breakpoints concept.

This provides the user a place to start further analysis.

How does DM-TAO accomplish its assignments?

The distinctiveness of DM-TAO and the problems that

it attacks merit some elaboration. It uses the DM to

drive a connectionist-based inference engine (TAO),

similar to [5]. The DM is built as a

semantic/connectionist hybrid network in which each

domain concept (e.g., Locations of breakpoints) is

represented as a node and the relationships between

nodes are represented as explicit links (e.g., Save code

bytes and Locations of breakpoints are related via a

uses link). There are a variety of network node types:

concept node, feature node, term node, syntax node

etc., depending on the information being represented.

The nodes are grouped together into layers. The

feature, term and syntax nodes form the input layer of

the network, while the concept nodes are loosely

organized at different levels of abstraction, generally

reflecting the conceptual infrastructure of the domain

model. The different inter-concept relationships are

represented by corresponding inter-node link types.

Every link in the system has a real-valued weight

associated with it, quantifying the strength of the

relationship between the two nodes connected by it.

breakpoint-location

4/6

proc.h

235-235

Figure 8: DM-TAO Suggests Assignment

CACM Submission - 8 - CACM May 1994/Vol. 37, No. 5

The nodes serve as the processing units of the

network and generate appropriate signal strengths or

activation levels as a nonlinear function of the input.

For most nodes (except the input layer), the input

signal is a function of the activations generated by the

connected nodes in the previous layer modulated by the

weight on the connecting link. Nodes in the input layer

are directly driven by the actions of a feature-extractor

which extracts features such as syntax, lexical clues,

clustering clues etc. Their activation level is a function

of the number of corresponding clues found in the

current target code segment, the degree of the match,

and the activation history of related feature nodes. The

signals generated in the input layer are propagated

throughout the network via a controlled spreading

activation process, which continues until the concept

nodes compute their activation levels. If the computed

output of a concept node is higher than a certain value -

called the recognition threshold, then the domain

concept represented by that concept node is predicted

to be present in the corresponding section of code from

which the relevant clues were extracted.

The accuracy of prediction of the network is a

function of the weights distributed on it's links. The

system adapts it's response via a 'training' process,

which modulates these weights according to certain

rules to obtain an optimal distribution. In DM-TAO,

the training is effected in two stages: 1) The network is

initially primed with a priori knowledge from the

domain model regarding the degree of the association

between two connected concepts (a qualitative

assessment of low, medium or high provided by the

domain builder). 2) The network weights are adjusted

in a performance driven manner using qualitative

relevance feedback from the user regarding the validity

of the tentative concept assignments made by the

system.

While DM-TAO has shown promise, it is still

evolving and very much a research prototype.

5. Evaluation of DESIRE

In order to be credible, the evaluation of any system

meant to assist a user in understanding real programs

should be performed in a real-world context.

Consequently, the testing and evaluation of DESIRE

has always been done with real users. Even though all

of the tools discussed here are experimental prototypes,

they have been in use on real, large-scale programs (of

up to 220 KLOC) since 1989 by a number of different

users in several companies. DM-TAO is the one

exception. It is still a research prototype that we have

not yet released for use outside the lab. We feel that the

result is better because of this approach.

DESIRE was first released to selected users in

several companies in the spring of 1989. By 1992, it

had been installed at more than a dozen sites in seven

companies. The users are what we would characterize

as early adopters and for the most part are quite self

sufficient. However, there was still a fairly heavy

interaction with the users. A dozen or so sites is about

the limit that a small research group can handle without

impeding research progress.

 To date, the use of DESIRE has fallen primarily

into two classes: 1) exploration for debugging or

porting and 2) documentation for understanding and

reporting. The most popular tools for exploration are

the Slicer, the generic query system and the Prolog

based analysis system. For documentation, Germ is the

hands down winner. It is often used for reporting

passive, artfully tailored views of program structures

for publication or understanding.

DM-TAO is nearly complete but is still missing

several key facilities necessary for doing large-scale

validation experiments. Consequently, we have been

limited to small experiments that required a good deal

of manual labor. These experiments show promise but

not yet definitive.

Even though it has some of the weaknesses of a

research prototype, DESIRE has been used to do real

work.

6. Conclusions

Since the concept assignment problem is an

obviously hard problem, automation of even a small

portion of it requires architectures that process a range

of information types varying from formal to informal

such that the information inferred from the informal

can improve the ability to infer information from the

formal and visa versa. Further, it seems clear from our

analysis of example code that much understanding

relies strongly, though not exclusively, on plausible

inference. Finally, we conclude that deep

understanding relies on an a priori knowledge base that

is rich with expectations about the problem domain and

the typical architectures.

We are encouraged by the preliminary results of

DM-TAO. While we believe that the concept

assignment problem will probably never be completely

automated, some useful automation is possible. We

believe that by incorporating those parts that we can

automate into mixed-initiative systems in which the

software engineer provides those elements that are

beyond automation, it is possible to significantly

accelerate and simplify the understanding of programs.

CACM Submission - 9 - CACM May 1994/Vol. 37, No. 5

REFERENCES

1. Ted J. Biggerstaff, Systems Software Tools, Prentice-

Hall (1986).

2. Ted J. Biggerstaff, "Design Recovery for Reuse and

Maintenance" IEEE Computer, Vol. 22, No. 7, (July,

1989), pp. 36-49.

3. Ted J. Biggerstaff, Josiah Hoskins and Dallas Webster,

"DESIRE: A System for Design Recovery," MCC

Technical Memo STP-081-89, (April, 1989).

4. Ted J. Biggerstaff, Bharat Mitbander and Dallas

Webster, "The Concept Assignment Problem in

Program Understanding, ICSE, Baltimore, MD (May,

1993).

5. Jerome A. Feldman, Mark A. Fanty, Nigel H. Goddard

and Kenton J. Lynne, "Computing with Structured

Connectionist Networks," CACM Vol 31, No. 2,

(February, 1988).

6. M. Weiser, "Program Slicing," IEEE TSE, Vol 10,

(1984), pp 352-357.

CACM Submission - 10 - CACM May 1994/Vol. 37, No. 5

Glossary

Domain Model - A knowledge base that defines

concepts in a specific application domain (e.g.,

debuggers) as a set of entities and all of their

interrelationships (e.g., the Uses relationship between

the entities Locations of breakpoints and Save code

bytes entities).

Dominator - A procedure or function f is the

dominator of another procedure or function g if all call

paths to g go through f.

Parsing Oriented Recognition Model - A

recognition strategy that uses of a finite set of pattern

templates each of which specifies a concept occurrance

as a set of features. This is a recursive process in which

the simplest, most elemental concepts are recognized

first and then these concepts become features of larger-

grained, conposite concepts.

Recognition Model - The method or architecture

chosen to perform recognition.

Signature - The set of features (e.g., syntax,

semantic, graphical, etc.) that signal the occurance of a

specific concept pattern.

Program Slice - A program slice with respect to a

specific program variable reference is all statements of

the program that affect the value of that variable at that

location.

CACM Submission - 11 - CACM May 1994/Vol. 37, No. 5

Sidebar 1:

Automatic Concept Recognition

Concept assignment is a process of recognizing

concepts within a computer program -- which includes

all artifactual information associated with the code --

and building up an "understanding" or model of the

program by relating the recognized concepts to

portions of the program, to its operational context and

to one another. One of the simplest operational models

for the concept recognition and understanding process

is to view it as a parsing process[1,2]. In this view, any

given concept can be recognized from a specific

signature (i.e., some pattern of features) within the

target program. Indeed, many basic Computer Science

algorithms such as quicksort are amenable to this

process. The recognizer program uses a finite set of

pattern templates that recognize the concept signatures

by a parsing process, where the simplest, most

elemental concepts are recognized first and then these

concepts become features of larger-grained, composite

concepts. A degenerate case of this recognition process

is the familiar process of parsing programming

languages for compilation.

These patterns typically rely almost completely on

the formal, structure-oriented patterns of features,

which is largely a result of the nature of the technology

(namely, parsing technology) that is conveniently

available to attack this problem. For parsing

technologies to be effective, they rely heavily upon the

premise that the concepts to be recognized are

completely and (mostly) unambiguously determined by

the formal, structural features of the entity being parsed

and that these features are contextually quite local

(e.g., as in context free languages).

References:
1. Mehdi T. Harandi and Jim Q. Ning, "Knowledge-Based

Program Analysis," IEEE Software, Vol. 7, No. 1,

(January, 1990), pp. 74-81.

2. Charles E. Rich and Linda M. Wills, "Recognizing a

Program's Design: A Graph-Parsing Approach," IEEE

Software, Vol. 7, No. 1, (January, 1990), pp. 82-89

CACM Submission - 12 - CACM May 1994/Vol. 37, No. 5

Sidebar 2:

 Related Research and Technology

There are a variety of technologies that address

facets of the program understanding problem. The

approaches taken and facilities included vary widely

based on the research or technology purpose. A few

broad (overlapping) categories that are relevant to

program understanding are:

Maintenance and Re-engineering: The forces of

change (e.g., computer "downsizing") are resulting in

increased automation supporting program maintenance

and re-engineering. These tools are variously focused

on program reorganizing [7,10], program porting, or

database re-engineering [4].

Reusable Component Recovery: Closely related to

maintenance tools are those aimed at extracting

reusable information from existing code, either in the

form of executable components or non-executable

business rules. [6]

Program Analysis and Development Aids: The

development of large-scale systems requires

increasingly greater levels of tools support for the

programmer:

• Search, extraction and condensation of

explicit, static, and often distributed program

information, such as provided by query

systems [1], program slicers, language-aware

editors, etc.,

• Computation of implicit program information

such as provided by module groupings [9] or

data flow[2, 8], and

• Generator-based tools with strongly domain-

oriented visual metaphors, clip-art assembly

methods and hypermedia-like navigational

aids [5].

Documentation and Understanding Aids:
Documentation tools produce publication-oriented

projections of concrete program information (e.g.,

browser views and other diagrammatic descriptions) as

well as more abstracted views such as CASE-oriented

design views. In addition, expert systems that can

answer a limited class of questions about a target

program [3] are beginning to emerge.

Also see sidebar titled Automatic Concept

Recognition.

References:
1. Yih Farn Chen, Michael Y. Nishimoto, and C.V.

Ramamoorthy, "The C Information Abstraction

System", IEEE TSE, Vol. 16, No. 3 (March 1990), pp.

325-34.

2. Gerardo Canfora, Aniello Cimitile and Ugo de Carlini,

"A Logic-Based Approach to Reverse Engineering

Tools Production," IEEE TSE, Vol. 18, No. 12

(December, 1992).

3. Premkumar Devanbu, Ronald J. Brachman, Peter G.

Selfridge, and Bruce W. Ballard, "LaSSIE: a

Knowledge-based Software Information System,"

Proceedings of the 12th International Conference on

SoftwareEngineering, Nice, France (March, 1990).

4. J-L. Hainaut, M. Chandelon, C. Tonneau and M. Joris,

"Contribution to a Theory of Database Reverse

Engineering," Proceedings of the Working Conference

on Reverse Engineering, Baltimore, MD (May, 1993).

5. Microsoft Visual BasicTM Programmer's Guide,

Version 3.0, Microsoft Corporation (1993).

6. Jim Ning, Andre Engberts and Wojtek Kozaczynski,

"Recovering Reusable Components from Legacy

Systems by Program Segmentation," Proceedings of the

Working Conference on Reverse Engineering,

Baltimore, MD (May, 1993).

7. Philip Newcomb and Lawrence Markosian,

"Automating the Modularization of Large COBOL

Programs: Application of an Enabling Technology for

Reengineering," Proceedings of the Working

Conference on Reverse Engineering, Baltimore, MD

(May, 1993).

8. Charles Rich and Richard C. Waters, "The

Programmers's Apprentice: A Research Overview,"

IEEE Computer, Vol 21, No. 11 (November, 1988).

9. Robert W. Schwanke, "An Intelligent Tool for Re-

engineering Software Modularity", Proc. 13th ICSE,

May 13-15, 1991, Austin, TX, pp. 83-92.

10. M. P. Ward and K. H. Bennett, "A Practical Program

Transformation System for Reverse Engineering,"

Proceedings of the Working Conference on Reverse

Engineering, Baltimore, MD (May, 1993).

CACM Submission - 13 - CACM May 1994/Vol. 37, No. 5

Ted Biggerstaff is Research Program Manager at

Microsoft Research. His interests include software

reuse, design recovery, reverse engineering, re-

engineering, transformational programming, and neural

networks. He can be reached at Microsoft Research,

Mail Stop 9S/1032, One Microsoft Way, Redmond,

Washington, 98052-6399 or on the Internet at

tedb@microsoft.com.

Bharat Mitbander is Member of Technical Staff at

Microelectronics and Computer Technology

Corporation (MCC). His research interests include

design information recovery, application dredging,

knowledge discovery, neural networks and design

automation. He can be reached at MCC, 3500 W.

Balcones center Drive, Austin, TX 78759-5398 or via

the Internet at mitbander@mcc.com.

Dallas Webster is Senior Member of Technical

Staff at Microelectronics and Computer Technology

Corporation (MCC). His research interests include

design information recovery, application dredging, and

knowledge acquisition, representation, and

presentation. He can be reached at MCC, 3500 W.

Balcones center Drive, Austin, TX 78759-5398 or via

the Internet at webster@mcc.com.

