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1. Introduction

Software reusability (Biggerstaff and Perlis, 1984 ; Biggerstaff and Richter,
1987; Freeman, 1987; Tracz, 1987, 1988; Biggerstaff and Perlis, 1989; Weide
et al., 1991) is not a “*silver bullet”* (Brooks, 1987), but is an approach that
under special circumstances can produce an order of magnitude
improvement in software productivity and quality, and under more common

* The |

“silver bullet™ is jargon that refers to a panacea for software development.
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circumstances can produce less spectacular but nevertheless significant
improvements in both. This chapter will examine several aspects of reuse:
(1) reuse hyperboles that lead to false expectations, (2) examples of reuse
successes, (3) the factors that make these examples successful, (4) the rela-
tionships among these factors, (5) in particular, the relationship between
reuse technologies and their potential for productivity and quality
improvement, and (6) the quantitative relationship between the key factors
and the resultant reuse benefits.

1.1  Hyperboles of Reuse

After listening to a series of speakers, each promising additive cost
decreases that were summing suspiciously close to 100%, one wa g was heard
to comment, “If this keeps up, pretty soon our internal software development
activities will be so efficient that they will start returning a profit.” As in this
story, software reusability hyperboles often strain credulity. Unfortunately,
software reusability hyperbole is more seductive than software reusability
reality.

There are several major reuse hyperboles that reflect some measure of
truth but unfortunately overstate the profit of reuse or understate the
required qualifications and constraints.

® Reuse technology is the most important factor to success. This is an
aspect of the silver bullet attitude and is typified by statements like:
“If I choose Ada, or Object-Oriented programming or an application
generator then all other factors are second- and third-order terms in the
equation that defines the expected improvement. Success is assured.”
However, this is seldom completely true. While the technology can have
very high impact (as with application generators for example), it is
quite sensitive to other factors such as the narrowness of the application
domain, the degree to which the domain is understood, the rate of
technology change within the domain, the cultural attitude and policies
of the development organizations, and so forth. Yes, the technology is
important but it is not always primary nor even a completely independ-
ent factor.

® Reuse can be applied everywhere to great benefit. This is another aspect
of the silver bullet attitude that one can apply reuse to any problem or
application domain with the same expectation of high success. The
reality is that narrow, well-understood application domains with slowly
changing technologies and standardized architectures are the most
likely to provide a context where reuse can be highly successful. For
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example, well-understood domains like management information sys-
tems (MIS) and business applications, user interfaces, narrowly defined
product lines, numerical computation, etc. all, to a greater or lesser
extent, have these qualities and reuse has flourished in these environ-
ments. Reuse has failed in new, poorly understood domains.

® Reuse is a hunter/gatherer activity. Making a successful reuse system
is largely an intellectual activity of finding the right domain, the right
domain standards, the infrastructure, and the right technical culture.
It is not simply a matter of going out into the field and gathering up
components left and right. Casually assembled libraries seldom are the
basis of a high payoff reuse system. Successful reuse systems are crafted
to accomplish a set of well and narrowly defined company or organiza-
tional goals. Too general a set of goals (e.g., we need a reuse system)
or too general a domain (e.g., we need components that support all of
our functional needs) usually lead to a low payoff. The hidden truth in
this attitude is that populating a reuse library is largely fieldwork and
that the “gold” is in the domain. But the success comes through prob-
lem driven harvesting, establishing domain standards to enhance com-
ponent interconnectability and careful adaptation of the harvested
components to those interconnection standards.

® We can have reuse without changing our process. Reuse is sensitive to
many cultural, policy and environmental factors. An anti-reuse attitude
within an organization, a process that is inconsistent with reuse or a
weak, unsupportive infrastructure (software and process) can doom a
potentially successful reuse effort.

Given that we reject these hyperboles, let us look at the reality of software
reuse. In the broadest sense, software reuse is the formalization and
recording of engineering solutions so that they can be used again on similar
software developments with very little change. Hence, in one sense, the
software reuse process institutionalizes the natural process of technology
evolution. Consider the evolution of commercial software products. Success-
ful companies often maximize their competitiveness by focusing on product
niches where they can build up their technological expertise and thereby
their product sets and markets, in an evolutionary fashion. For example,
over a period of years, a company might evolve a line editor into a screen
editor and then evolve that into a word processor and finally evolve that
into a desktop publishing system. Each generation in such an evolution
exploits elements of the previous generations to create new products and
thereby build new markets. In an informal sense, such a company is practic-
ing reuse within a product niche. The companies that formalize and institu-
tionalize this process are truly practicing reuse. Since this definition of reuse
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is independent of any specific enabling technology (e.g., reuse libraries or
application generators), it allows us to take a very broad view of reuse, both
in the range of potential component types that can be reused (e.g., designs,
code, process, know-how, etc.) as well as in the range of technologies that
can be used to implement reuse.

The success of a reuse strategy depends on many factors, some of them
technical and some of them managerial. While we will attempt to point out
management factors that foster or impede reuse, we will largely focus on the
technology of reuse.

In the next subsection, we hypothesize a number of factors or properties
that we believe foster successful software reuse. Then in the following sec-
tions of the chapter, we will examine several reuse successes and the role
that these factors played in those successes. Finally, we attempt to build a
qualitative model that describes the interrelationship among the factors and
a quantitative model that describes the effects of two of the key independent
technology factors on the payoff of software reuse. In the end, we hope to
leave the reader with a good sense of the kinds of reuse approaches and
technologies that will lead to success and those that will not.

1.2 Key Factors Fostering Successful Reuse

Some of the key factors that foster successful reuse are:

Narrow domains

Well-understood domains/architectures

Slowly changing domain technology

Intercomponent standards

Economies of scale in market (opportunities for reuse)
Economies of scale in technologies (component scale)
Infrastructure support ( process and tools)

Reuse implementation technology

Narrow domains: The breadth of the target domain is the one factor that
stands out above all others in its effect on productivity and quality
improvement. Typically, if the target domain is so broad that it spans a
number of application areas (often called horizontal reuse) the overall payoff
of reuse for any given application development is significantly smaller than
if the target domain is quite narrow (often called vertical reuse). The breadth
of the target domain is largely discretionary, but there is a degree to which
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the reuse implementation technology may constrain the domain breadth.
There is a range of implementation technologies, with broad-spectrum tech-
nologies at one end and narrow-spectrum technologies at the other. Broad-
spectrum technologies (e.g., libraries of objects or functions) impose few or
no constraints on the breadth of the target domain. However, narrow-spec-
trum technologies, because of their intimate relationship with specific
domain niches, do constrain the breadth of the target domain, and most
often constrain target domains quite narrowly. In general, narrow-spectrum
implementation technologies incorporate specialized application domain
knowledge that amplifies their productivity and quality improvements within
some specific but narrow domain. As an example, fourth-generation lan-
guages (4GLs) assume an application model that significantly improves the
software developer’s ability to build MIS applications but is of no help in
other domains such as avionics.

Even though there is a restrictive relationship only at one end of the
spectrum (between narrow target domains and narrow implementation tech-
nologies), in practice there seems to be a correlation between both ends of
the spectrum. Not only do narrow-spectrum technologies, perforce, corre-
spond to narrow target domains but broad-spectrum technologies often (but
not always) correspond to broader domains.

The key effect of domain breadth is the potential productivity and quality
improvement possible through reuse. Reuse within very narrow domains
provides very high leverage on productivity and quality for applications (or
portions of applications) that fall within the domain but provides little or
no leverage for applications (or portions of applications) that fall outside
the domain. For example, an application generator might be used to build
MIS applications and it would give one very high leverage on the data
management portion of the application but it would not help at all in the
development of the rest of the application. Luckily, MIS applications are
heavily oriented toward data management and therefore, such reuse technol-
ogies can have a significant overall impact on MIS applications.

Broad-spectrum technologies, on the other hand, show much less produc-
tivity and quality improvement on each individual application development
but they affect a much broader class of applications. Generally speaking,
the broad-spectrum technologies we are going to consider can be applied to
virtually any class of application development.

In the succeeding sections, we will often use the general terms narrow-
spectrum reuse and broad-spectrum reuse to indicate the breadth of the
domain without any specific indication of the nature of the implementation
technology being used. If the breadth of the implementation technology is
important to the point, we will make that clear either explicitly or from
context.
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Well-understood domains/architectures: The second key factor affecting the
potential for reuse success is the level of understanding of problem and
application domains, and the prototypical application architectures used
within those domains. Well-understood domains and architectures foster
successful reuse approaches and poorly understood domains and architec-
tures almost assure failure. Why is this? Often as a domain becomes better
and better understood, a few basic, useful, and successful application archi-
tectures evolve within the domain. Reuse systems can exploit this by reusing
these well-understood architectural structures so that the software developer
does not have to recreate or invent them from scratch for each new applica-
tion being developed. However, if such application architectures have not
yet evolved or are not known by the implementing organization, it is unlikely
they will be discovered by a reuse implementation project.

The fact that the problem domains in which narrow-spectrum reuse has
been successful are well-understood domains is not coincidental. In fact, it
is a requirement of a narrow-spectrum reuse technology. This observation
points up a guideline for companies that intend to build a narrow spectrum
reuse system to support application development.

To successfully develop a narrow-spectrum reuse technology, say an applica-
tion generator or a domain-specific reuse library, the developer must thor-
oughly understand the problem and application domain and its prototypical
architectures in great detail before embarking on the development of a reuse
system for that domain.

There is a three-system rule of thumb—if one has not built at least three
applications of the kind he or she would like to support with a narrow-
spectrum technology, he or she should not expect to create a program gener-
ator or a reuse system or any other narrow-spectrum technology that will
help build the next application system. It will not happen. One must under-
stand the domain and the prototypical architectures thoroughly before he
or she can create a narrow-spectrum reuse technology. Hence, the biggest,
hardest, and most critical part of creating a narrow-spectrum technology is
the understanding of the domain and its prototypical architectures.

Slowly changing domain technology: Not only must one understand the
domain but the domain needs to be a slowly changing one if it is to lend itself
to reuse technology. For example, the domain of numerical computation is
one in which the underlying technology (mathematics) changes very little
over time. Certainly, new algorithms with new properties are invented from
time to time (e.g., algorithms allowing high levels of parallel computation)
but these are infrequent and the existing algorithms are largely constant.
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I'hus, if an organization makes a capital investment in a reuse library or an
application generator for such domains, they can amortize that investment
over many years. Rapidly changing domains, on the other hand, do not
allow such long periods of productive use and, therefore, do not offer as
profitable a return on the initial investment.

Intercomponent standards: The next factor is the existence of intercomponent
standards. That is, just like hardware chips plug together because there are
interchip standards, software components, and especially narrow-
spectrum technology components plug together because there are analogous
intercomponent standards. These standards arise out of an understanding
of the problem domains and the prototypical architectures. The narrower
the domain, the narrower and more detailed the intercomponent standards.
In very broad domains, these standards deal with general interfaces and data
(¢.g., the format of strings in a string package), whereas in a narrow domain
the standards are far more narrowly focused on the elements of that domain
(e.g., in an “input forms” domain, the standards might specify the basic
data building blocks such as field, label, data type, data presentation form,
and so forth).

This factor suggests that certain narrow spectrum reuse technology strat-
egies will not work well. For example, if one intends to build a library of
reusable software components, the strategy of creating a library and then
filling it with uncoordinated software components, will lead to a vast waste-
land of components that do not fit together very well. Consequently, the
productivity improvement will be low because the cost to adapt the compo-
nents is high. The analogy with hardware manufacturing holds here. If two
software components (or chips) are not designed to use the same kinds of
interfaces and data (signals), extra effort is required to build interface
software (hardware) to tie them together. This reduces that payoff gained
by reuse and also tends to clutter the design with Rube Goldberg patches
that reduce the resulting application’s maintainability and limit its ability to
evolve over time.

Economies of scale in market: Another important factor is the economies of
scale in the “market,” where we are using the term market in the broadest
sense of the word and intend to include the idea that the total coalition of
users of a component, regardless of the means by which they acquire it, is
the market for that component. Thus, economies of scale in the market
means that any reuse technology should be driven by a large demand or
need. One should be able to identify many opportunities to apply the reuse
technology to justify its development (or purchase) and maintenance. If you
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are only going to develop one or two applications, it seldom pays to develop
(or purchase) a reuse technology for the target application. This is not to say
that informal, ad hoc or opportunistic reuse, which is not organizationally
formalized, should not be exploited. The point is that if an institutionalized
reuse technology costs a company a lot to develop and maintain, it should
return a lot more in savings to that company. One way to gauge that return
beforehand is to consider the opportunities for reuse.

Economies of scale in technologies: There are also economies of scale in
the technologies themselves, in the sense that, the larger the prefabricated
component that is used by the reuse technology, the greater the productivity
improvement for each use. And it is this increase in size of components that
tends to force the narrowing of the technology domain. Thus, the size of the
prefabricated component, the narrowness of the application domain, and
the potential productivity improvement are all positively correlated.

Because the scale of the components is so important and the fact that scale
correlates to other important properties of reuse technologies, we introduce
some broad terminology that draws on the hardware component analogy.
Small-scale components are defined to be from 10 to 100 lines of code, i.e.,
0(10") LOC; medium-scale components are those from 100 to 1000 lines,
i.e., O(10%) LOC; large-scale from 1000 to 10,000 lines, i.e., O(10*) LOC;
very large-scale from 10,000 to 100,000 lines, i.e., O(10*) LOC; and hyper-
scale above 100,000 lines, i.e., greater than O(10°) LOC. The sizes that we
choose are somewhat arbitrary and flexible because we are most interested
in the relative properties of the reuse systems that rely on the different scales
of components. Therefore, the numbers should not be taken too literally but
rather should provide a loose categorization of component sizes.

Carrying the hardware analogy further, we use the term SSR (small-scale
reuse) to refer to those technologies that tend to use small-scale components
on the average. SSR is motivated by the hardware term SSI (small-scale
integration). Similarly, MSR, LSR, VLSR, and HSR are medium-scale,
large-scale, very large-scale and hyper-scale reuse technologies. While reuse
technologies are not, strictly speaking, limited to a particular scale, they
seem to most easily apply to a characteristic scale range. For example,
libraries of functions tend toward small scale and medium scale not because
it is impossible to build large and very large function-based components,
but rather because of the lack of formal support for large-scale design struc-
tures (e.g., objects or frameworks) in functionally based programming lan-
guages. Any such large-scale design structure falls outside of the functional
language formalism and must be manually enforced. Experience has shown
that manual enforcement tends not to be very successful. It is generally
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sasier to use other reuse implementation technologies (e.g., true object-based
languages) that provide formal mechanisms to enforce and manage these
larger-scale structures.

Infrastructure support: Another important factor is an organization’s infras-
tructure. Most reuse technologies (and especially the narrow spectrum
technologies) pay off best when they are coordinated with an existing, well-
defined, and mature software development infrastructure (process). For
example, an organization that uses computer-aided software engineering
(CASE) tools is better positioned to exploit the reuse of design information
than one that does not. CASE tools provide a (partially) formal notation
for capturing such designs. And if an organization is already trained and
using CASE tools, the additional effort to integrate a library of reusable
designs into the process is significantly less than it would be otherwise.

Reuse implementation technologies: One factor that can effect the degree of
success of a reuse approach is the implementation or enabling technology
that one chooses. For many narrow spectrum approaches to reuse, the tech-
nology is intimately tied to the approach and it makes more sense to discuss
these technologies in the context of the discussions of the specific approaches.
We will do this in the following section. On the other hand, broad-spectrum
implementation technologies are not tied to any specific reuse approach,
even though they are quite often used for broad-spectrum reuse, and so we
will mention a few instances of these technologies here and discuss their
values.

e Libraries: Library technology is not a primary success factor but its
value lies largely in establishing a concrete process infrastructure that
fosters reuse by its existence more than by its functionality. If an organi-
zation’s first response to a reuse initiative is to build a library system,
then they probably have not yet thought enough about the other more
important factors.

e (lassification systems: The main value of classification systems is that
they force an organization to understand the problem and application
domain.

e CASE tools: Their value lies in establishing a representation system for
dealing with designs and thereby including reusable components that
are more abstract (and therefore, more widely reusable) than code.

e Object-oriented programming languages: Their main value is in the
perspicuity of the representation and its tendency to foster larger and
more abstract reusable components (i.e., classes and frameworks) than
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in earlier languages (i.c., functions). Further, the object-oriented repre-
sentation tends to lead to clearer, more elegant and more compact
designs.

In summary, reuse success is not a result of one technology or one process
model or one culture. It is a result of many different mixtures of technologies,
process models, and cultures. We can be guided by a few general principles
that point in the direction of success and warn us away from surefire failures,
but in the end, the details of success are defined by hard technical analysis
and a strong focus on the application and problem domains. I suspect that
there is an 80/20 rule here—the domain has an 80% effect and all of the rest
has a 20% effect.

2. Software Reusability Successes

Now let us consider some cases of successful reuse and analyze them in
the light of these success factors.

2.1 Fourth-Generation Languages (LSR to VLSR)

Among of the earliest rapid software development technologies to appear
and ones that can be bought of the shelf today are fourth-generation lan-
guages (4GLs) (Gregory and Wojtkowski, 1990; Martin, 1985; Martin and
Leben, 1986a, b). These are quite narrow technologies that apply most spe-
cifically to the domain of MIS and business applications. The entities that
are being reused in these two cases are the abstract architectural structures
(i.e., design components) of MIS applications.

The typical 4GL system provides the end user with some kind of high-
level capability for database management. For example, a high-level query
from the end-user is often translated into an application database transaction
that generates a report. The report may be a business form, a text-based
report, a graph, a chart, or a mixture of these elements (see Fig. 1).

4GLs are typically very high-level languages that allow you to talk to the
database system without all of the overhead that you would have to use if
you were writing an equivalent COBOL program. In a COBOL program
you might have to allocate memory and buffers to handle the results from
the query. You might have to open the database, initiate the search, and so
forth. In contrast, 4GL languages typically do all of those things for you.
They provide a language that requires you to talk only about the essential
database operations. For example, Fig. 2 shows a sequential query language
(SQL) query that selects a part number from a table of all parts, such that
the weight of the associated part is less than 700 pounds.
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FiG. 1. Fourth-generation languages (4GLs).

SELECT Part#
FROM PART
WHERE PartWeight < 700

FiG. 2. Typical 4GL Query (in SQL).

These languages provide you with quite an increase in productivity
because of the reduction in the amount of information necessary to perform
an operation. Figure 3 illustrates this reduction by comparing the number
of bytes required to express a benchmark query in COBOL against the
number of bytes required in various 4GLs (Matos and Jalics, 1989). Of
course, the exact number of bytes needed to express any given query will
vary but the relative sizes represented in this chart are pretty typical. The
typical proportions are from 11 to 22 times more characters 10 express a
query in COBOL than in a 4GL. Since the number of bytes required is
directly proportional to the amount of work required to create the query, it
is an order of magnitude easier to perform database queries and generate
reports in 4GLs than in COBOL or other high-level languages.

Now let us look at this example of reuse against the properties that we
proposed :

e Narrow domains: clearly, the domain is quite narrow in that it applies
to the data management and user interface aspects of MIS and business
systems in general. Importantly, this domain is a large part of each
such application and therefore, the overall payoff for each application
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can be quite large. Over all business applications, the variance is quite
large but one can expect the reduction in effort to range typically
between 25% and 90%. It is not atypical for 90% or more of the applica-
tion to be directly handled by the 4GL, thereby allowing the application
to be created for one tenth of the cost of building the system with a
conventional high-level language. Defects are similarly reduced.

e Well-understood domains/architectures: the data management and

user interface architectures within this application domain have been
increasingly better understood and standardized for the last 25-35
years, and consequently they have evolved into standard subsystems
that are common to many if not most of the application programs in
the domain. DBMSs (database management systems) and 4GLs are
two of the concrete manifestations of that ongoing understanding and
standardization process.

e Slowly changing domain technology: the underlying hardware and

software technologies have changed slowly enough that they can be
largely hidden by lower-level system layers, e.g., DBMSs,
Intercomponent standards: the DBMSs form a set of hardware-hiding
standards and the 4GLs impose an additional set of application logic-
hiding standards. If we looked inside of various 4GL systems we would
likely find other finer-grained standards that allow the subsystems of
the 4GL to fit together easily.

Economies of scale in market: the MIS and business system market is
probably one of the largest application markets that exist today. Virtu-
ally every business of any size at all requires some set of computer
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applications such as payroll, accounts receivable, etc. and these are only
the tip of the iceberg for large companies. DBMSs, 4GLs, application
generators, and the like are simply the evolutionary answer to these
huge market pressures. It is the huge pressures and the advanced age
of the market that explains why these systems were among the first
examples of narrow-spectrum reuse technologies and why they are cur-
rently at the advanced level of maturity and productivity improvement.

e [conomies of scale in technologies: the components, i.e., subsystems
within the 4GLs, being reused are very large-grained pieces and this
correlates with the level of productivity and quality improvement.

e [nfrastructure support: the infrastructure support is largely in place
when these tools are introduced because the tools are built to fit into an
existing MIS shop. They are fitted to the kinds of hardware, operating
systems, computer languages, and typical process models of MIS shops.
This makes their adoption quite easy.

2.2 Application Generators (VLSR)

Application generators form another class of reuse technology that is
similar to the 4GL class but varies in the following ways:

I. Generators are typically used to generate application systems that will
be used many times whereas 4GLs generate programs or queries that
are often one-of-a-kind.

Application generators tend to be more narrow than 4GLs, often focus-
ing on a narrow application family, whereas 4GLs tend to focus on a
broader application domain containing many application families. For
example, compiler builders, like YACC and Lex, are application gener-
ators for building applications in the parser and lexical analyzer
families.

(]

While it is a research prototype rather than a production system, the
GENESIS system (Batory, 1988; Batory et al., 1989) is a good example
of an application generator that is pushing the productivity and quality
improvement limits. GENESIS (see Fig. 4) is for DBMSs what compiler
builders are for compilers. GENESIS generates database management sys-
tems. While many application generators can be purchased off the shelf
today, GENESIS is still in its research phase but, nevertheless, is interesting
because it illustrates how far generator technology can be pushed. How does
GENESIS work?

The GENESIS user specifies a set of requirements that characterize the
kind of DBMS desired. In a typical specification, the user specifies (1) a data
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Generator System

FiG. 4. Genesis application generator system.

language, e.g., Sequel and/or QBE; (2) the database link WBv_mEo:an:.
e.g., a ring list: (3) the file mapping, e.g., secondary indexes and encryption;
(4) the file structures, e.g., B-trees, ISAM. unordered files, etc.; (5) the
recovery methods, for example, logging, shadowing, etc.; and (6) the data
type schemas, e.g., ints and reals and strings, etc. DmZMm—m. then generates
a database management system to those specifications. So if one wants to
generate a DBMS that has exactly the same functionality as Ingress, that
can be done by specifying the particular requirements of :_m_.wmm.

Typically, application generators provide productivity that is one or two
orders of magnitude better than hand coding. While the only vB.E,mE.EE
GENESIS solves is the creation of database management systems, it is highly
productive at this. I can generate a 40,000-plus line DBMS in about 30
minutes of work. So, application generators can give you very high anco‘
tivity for very narrow domains. What is more, the quality of the code is very
high. Typically, a bug that is due to the generator turns up about as fre-
quently as bugs in a good, mature compiler.

Now let us look at this example of reuse against the factors:

e Narrow domains: this is one of the narrowest aoamm:mi@w_&?-m:a
the productivity and quality improvements over hand coding ?oa.:
scratch are consequently exceptionally high. In this case, we can experi-
ence several orders of magnitude improvement in productivity and
quality—40,000 lines of debugged code in less than 1 hour of Eo,qr by
using GENESIS versus four or five people for several years to build an
equivalent target system from scratch.

e Well-understood domains/architectures: DBMSs have the advantage
that hundreds of researchers have been working for over 20 years to

AN ASSESSMENT AND ANALYSIS OF SOFTWARE REUSE 15

work out the theoretical basis of these systems. That background work
has turned an impossible task (i.e., building a GENESIS system 20
years ago) into one that is just hard (i.e., building GENESIS today).

® Slowly changing domain technology: DBMS technologies are relatively
stable overtime although they do seem to go through periodic technol-
ogy shifts such as moving from hierarchical to relational and more
recently to Object-Oriented DBMSs. However, within any given DBMS
model, the change is relatively slow and within the older technologies
(hierarchical and relational) fundamental advances now seem almost
nonexistent.

® Intercomponent standards: GENESIS would be impossible without the
development of a set of well-defined module interconnection standards
that allow the system to plug together various modules with different
operational properties but having the same standardized connection
interface.

® Fconomies of scale in market: since GENESIS is a research project, it
is not yet clear whether or not there really are economies of scale for
GENESIS per se. Nevertheless, the typical application generator arises
because of a “market pressure” (sometimes within a single company)
for the facility.

® Fconomies of scale in technologies: the prefabricated GENESIS com-
ponents are typically several thousand lines of (parameterized) code
and if one considers the additional generated code, GENESIS is in the
VLSR technology range.

® Infrastructure support: as with 4GLs, application generators are fitted
to the kinds of hardware, operating systems, computer languages, and
typical process models that already exist within MIS shops, making
their adoption quite easy.

2.3 Forms Designer Systems (LSR to VLSR)

Another kind of reuse technology is forms designers, which are variously
called screen painters or designers. These systems attack the problem of
developing a forms-based user interface for a business application. Most
businesses are rife with forms, e.g., invoice forms, that are used as an integral
part of the business operation. Consequently, they are ubiquitous in many
business applications and are therefore a prime candidate for a reuse technol-
ogy. Forms designers and screen painters allow one to quickly generate
a forms-based user interface by using a set of predefined building block
components. Figure 5 presents a conceptual overview of forms designers.

A Torms designer’s form representation is visually like a paper-based form
and it is used by the application program to request input from, and present
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Form/Screen Schema

Form/Screen Design
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FiG. 5. Creation of a form-based application interface.

output to the end-user. Users create forms by a direct manipulation interface
permitting them to draw the form on the screen, complete with labels, fields,
borders, and so forth, exactly the way they want it to look to the application
user. Then, the form design is turned into an internal schema that specifies
the form’s labels, boxes, boundaries, colors, fields, and their positions. The
schema may also specify editing modes. For example, numbers may be the
only valid input for a date or price field. It specifies the edit order of the
fields. i.c.. the order in which the cursor sequences through the fields as the
end user presses the tab or return key. The schema may also allow formulas
that functionally relate certain ficlds to other fields. For example, the gross
pay field in a work record form could be calculated as the product of the
field containing the salary per hour times the field containing the number of
hours worked.

Once these forms are created, they are used by an application program as
a way to request input from or present output to the user as shown in Fig.
6. In the use phase, the application program loads the schema and a run-
time library that manages the form’s data and user interaction. The run-
time library handles the presentation of the form to the user, the interaction
with the user, the editing of the fields, and the transformation of the form’s
data into some kind of transaction or internal record that can be used by
the application program.

Once the data are entered into the form by the end-user, the form’s data
fields are typically converted into a data record or database transaction,
which may produce a variety of business side effects e.g., inventory being
ordered, an invoice generated, etc.

The properties of this domain are:
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FIG. 6. Operation of form within an application program.

® Narrow domains: this domain—forms-based user interfaces—is quite
Narrow JE constitutes a smaller portion of the application (i.e., onl
the user interface portion) than 4GLs typically do. Therefore mm._omam
lo a somewhat smaller but by no means inconsequential aoﬁ_o._u:._nim._
cost ,.,_:a. defect reduction. Depending on the overall complexity of the
:vc__a.n.:_c:, one might expect a typical developmental cost and defect
H.Q,Ec.:o: to be in the 5-25% range. When a forms designer is incorpor-
»_AEQ, ,__:o a 4GL, which is common, the overall improvement ?Wu S
significantly and an order of magnitude decrease in total aa<o_ov5n:h_
cost and number of defects is common.

e Well-understood domains /architectures - like 4GLs, this technology has

_ﬁc: evolving for years and the methods and architectures are well and
widely known.

Slowly changing domain technology: this technology has been largel

stable for years with only minor evolutionary changes arising ?oqw
advances in monitor technology (e.g., high resolution, bitmapped
ﬁ_.,:::m ete.) and the associated interface software (e.g. m,_.mvEnm_ _._mma.
interfaces (GUI) and windowing interfaces). Much of :u:m evolutionary
change can be and has been isolated by software layers within the
screen designers that abstract out the essential properties of the monitor
hardware and the interface software.

__:..._.::_,__,::n:_ standards: the screen designer tool establishes a wide
range of standards including what types of data can be accommodated
i fields, how the field and label information is encoded for the run-
time routines, what kinds of editing operations are available to the
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user. and the nature of the data and operations that result from a

mpleted form. = .
° Mwo%oimnm of scale in market : like the 4GLs, thisis a huge marketplace

at includes most MIS and business systems. .

® mwm:ﬁﬂ”%rwﬁ scale in technologies: the reusable noavo:nz“m (in the

run-time library) are medium- to large-scale nomn componen M i

e Infrastructure support: like the 4GLs and application ma:m:m Mu oh._mﬁow
technology fits the existing infrastructure and theref ore, mnoo”“
easy inclusion into the existing software develop environment.

2 4 Interface Developer's Toolkits (VLSR)
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1 : ‘ 1 f the interface developer :
Figure 7 presents a conceptual overview o ] :
_w_ﬁo pﬁm form and screen designers, interface toolkits are anm__m:naa *,om
developing user interfaces. They tend to be built on top of Ermﬂgwn stan mm—n
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FiG. 7. Interface developer’s toolkit.
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i number of direct manipulation widgets (Nye and O’Reilly, 1990)—to use
the X windows (Heler, 1990; Hinckley, 1989; Nye, 1988; Scheifler et al.,
I988: Young, 1989) terminology—that can be included in the application
interface via calls. So a typical widget library would provide active regions,
i region sensitive to mouse events: window objects with all of the necessary
window management functionality; scrollbar objects so that windows can
show canvases that are actually much larger than the windows themselves
and allow the user to scroll to the unseen portions of the canvas; menus of
various kinds, such as pull-down, pop-up, sticky, etc. ; dialog boxes for data
input; buttons to invoke functions; icons to represent suspended programs;
cle,

An advantage of an interface toolkit is that it ensures a uniform look and
feel for all applications built with it. This allows the end-user to have a pretty
pood idea of how a new application operates based only on his or her
previous experience with other applications.

One of the first uses of this idea was in Xerox PARC’s Alto personal
computer system (Xerox, 1979). Later, the same idea was used in the Xerox
Stur Workstation (Xerox, 1981). The first widespread, commercialization
was in the Apple computer’s MacApt interface builder’s kit. More recently,
such toolkits have been built for various windowing systems. X-Windows
appears to be the emerging window standard for the Unix/workstation
world and several X-based toolkits are available, such as Interviews, Motif,
and Openwindows. One can also purchase similar toolkits for other operat-
g systems and machines types. Toolkits for the PC (personal computer)
market are built on top of Microsoft Windows (TM Microsoft), OS /2 Pres-
entation Manager (TM IBM), etc. The market for interface toolkits is Erow-
ing rapidly at this time.

The properties of this approach are much the same as the forms designers
with a few differences. First, because the applications using this approach
tend to cover a broader range of domains than just MIS or business systems,
the user interface is typically a much smaller part of the overall target appli-
cation program and therefore, while the payoff in absolute terms is large,
the decrease in developmental costs and defect levels is often proportionally
smaller over the whole developmental effort than with 4GLs and screen
designers.

While this technology is reasonably well understood and standards are
being formalized, it is not as mature as the forms interface, and therefore it
18 still evolving new subdomains. One subdomain is the recent emergence of
the GUI generator, the analogue of the forms designers. GUI generators,
which recently appeared on PCs and are just beginning to appear on work-
stations, allow one to design the screen interface through a direct manipula-
tion editor (Sun Microsystems Corporation, 1990). They allow one to
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graphically construct the interface design using high-level OEMMM._ “wﬂ%nﬁﬂw :
i d events. These tools are more co

panels, dialog boxes, an i
i s bec h more of the application

forms designers because so muc . St

1Ze lication by the software engine

from and be customized to the app : , .

than just being standard run-time functions loaded .:05 a __U_.m_,w ,M”MMn

these tools must allow a lot more custom programming Mu mﬂomﬂr_.mmom i

i i 5 lve, we can expect mor

interface designers emerge and evolve, 20 ;

application creation to be taken over by them and consequently, a furthe

decrease in development costs and defect levels.

25 The Software Factory (MSR to LSR,
Process-Oriented Reuse)

Another reuse approach is the software Jactory, mm ﬁamcnmmﬂ LHMMMMMW
ike ¢ tional manufacturing the i
5 are development more like conven .
MUMHE%::% M:% plays a large role. The software ?QoQ oow_,nnﬂ.%mmw
been perfected to a high art by a number of Japanese companies. _ommm. U_ e
software factory (Fig. 8) (Cusumano, 1989, 1991; Kmmmcﬂo_ﬁﬂ._ao e
1 is ki Their domain is real-u
typical example of this kind of reuse. . ok
%%_:‘c_ software for industrial applications, nmw_wﬁnﬁw mwnwhoquhwoﬂmsmm
isi i ic lve into , where the
This is MSR (with the potential to evo e e o
jus are artifacts drawn from across the full hife cycle.
are not just code, but are arti ! B e
i i i s, design, and code. In Toshi y |
is, they include requirements, Yos e
i i al languages, stored in a reuse rep e
.omponents are specified in forma . . . H
M:a Wocmoa in the course of developing customized <nnm6:m,0m the uﬁwwn M
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Fic. 8. Toshiba’s software factory.
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product family—each new version of the product represents only a modest
variation on the stored components. That is, every heavy steel rolling mill
I5 different in small ways, such as equipment kind and numbers, mill dimen-
stons, and equipment placement. Such differences can be accommodated
with only small changes in the requirements, designs, and code components.
T'his is accomplished by a “copy and edit™ approach. Interrelated require-
ments, design, and code components are retrieved from the repository and
manually modified to accommodate each new process control system.

Because the process is so highly formalized—e.g., through the existence
ol design languages—it is easy and natural for standards to arise. Further,
these standards are enforced by the existence of tools. Both the tools and
the associated standards grow and evolve together in an incremental way
over the years. Finally, the software factory has a strong commitment to the
support and maintenance of the repository system.

In Toshiba’s case, the formalized languages, supporting tools, and associ-
dted standards form the foundation of the formalized software factory pro-
cess and provide significant opportunities for leverage on productivity and
quality of the code. Between 1976 and 1985 the Toshiba software factory
inereased its software development productivity from an equivalent of 1390
lines of assembly source code per month to 3100 per month, thereby achiev-
g o cumulative productivity increase of approximately 150%. During the
sume period, they were able to reduce the number of faults to between one
(uarter and one tenth of the number that they were experiencing at the
beginning of the period (Cusumano, 1989). Other Japanese companies with
software factory models (e.g., NEC and Fujitsu) have shown similar
improvements in productivity and quality.

What key properties of the software factory model foster reuse success?

® Narrow domains: in this case, the domain is extremely narow (i.e., a
product family) leading to the opportunity for reusing very large-scale
picces. However, the measured payoff is more modest suggesting that
the degree of customization required for each such component may
mitigate the improvement.

Well-understood domains/architectures, slowly changing domain tech-
nology, intercomponent standards, and economies of scale in market:
these properties all favor reuse. The domain is a product family that
has been perfected over the years leading to a stable, well-understood
itecture with well-developed intra-application standards. The very
nature of the business establishes an inertia that slows the change of
the problem domain’s technology. While this is not a huge market, it
in clearly o sufficiently large market to make investment in reuse tech-
nology worthwhile. In short, these companies have determined that
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reuse makes business sense, which is the best measure of the value of
applying this technology.

e Infrastructure support: the operational character of these companies
provides a nurturing context for such techniques. The strong emphasis
on process and the inclination to cast the software development into a
manufacturing metaphor provide an infrastructure in which this
approach to reuse has a strong opportunity for success.

2.6 Emerging Large-Scale Component Kits (LSR)

Now let’s do a little bit of prediction and look at a set of development
technologies that are just beginning to emerge. You cannot buy these tech-
nologies today, but in a few years you probably will be able to. I believe
that interface toolkits will spawn the development of other complementary
toolkits that contain larger-scale no:..ﬁosa:ﬁm\noaﬁosaam that are much
more oriented to specific application domains and more complex than
widgets. This is an example of the emerging field of vertical reuse.

In some sense, large-scale components are an extension of the widget
notion but one that is more specialized to particular application domains.
(Domain specialization is an inevitable consequence of the growth of compo-
nent sizes.) For example, desktop publishing is an application domain that
is mature enough to supply such components, €.g., fonts, pixel images,
graphs, and various kinds of clip art. Spreadsheets arc another kind of
component that may be included in various applications. What is left to do is
to establish standards for their representation that transcend their particular
application niche. Once this is done, clip art and spreadsheet frameworks
can be imported into and used together within a single application program.
Today such integration would be difficult. As transcendent standard repre-
sentations emerge for these and similar component classes, it will become
relatively easy.

The large-scale component notion is enabled by object-oriented (Cox,
1986 Elis and Stroustrup, 1990 ; Goldberg and Robson, 1983; Meyer, 1988 ;
Saunders, 1989; Stroupstrup, 1986, 1988) technology in that objects repre-
sent a good implementation mechanism. They are finer grained than pro-
grams but larger grained than functions or subroutines. Another important
characteristic is that objects hide the details of their implementations thereby.
allowing them to be more casily moved into a new application context
without introducing conflicts between the implementation of the object and
its surrounding context. Thus, this property makes them more like black
boxes that can be plugged in where needed.

This proposed approach has many of the same properties as interface

toolkits adjusted to account for bigger components in Narrower domain

AN
ASSESSMENT AND ANALYSIS OF SOFTWARE REUSE 23

niches. W i
B Mmﬂ”umcmw expect that ﬁrm.ooavo:mi library would be a compilati
the average pa omﬂ.m e o_.soﬂq independent subdomain anw_ n._on
payoll for each application developed using that library o ﬁnm
wou

reflect the degree to whi
. : ich the subdomains i
ity in the application programs being amﬁ_ﬂwwmﬁmoa e

2.7 User-Oriented Information System (LSR to VLSR)

Anoth i s s
b _ﬁ_amzn_._uxmﬂ %_, woo_w: seems likely to emerge, one which is more special
toolkit. illustrat Qm ut less mvmo_m_ﬁna than 4GLs or forms design special-
_ :__xn_c.é _vwmw .nw._: Fig. 9, is likely to be a combination o_.:w_uo:mxpnam. ,_,_tm,,
(Bigelow, 1987; Biggerstaff and Richer, 1987; Conklin, 1987: Sl
g “ and Weiss, 1988); frame s : ’ en et
1985 Fikes 2.0k e systems (Brachma
_:__E_,_,.,:_ Mw m:a%mr_nh 1985; Finin, 1986a, b); oEmﬁ-oﬂWM”menrao_mﬁ
i _c.xcm. m%mi ox, 1986; Ellis and Stroustrup, 1990; Meyer Em%.qmmnm:,_-
S i 1 - Unce agan, while you can purche ; .
.._,_:h_”._“.__““_s__wm n?.“‘:.mnpn:mcnm of the desired Hacﬂ:%ﬂwo Wwﬂwwwﬂm Eﬁﬁ gl
that in 5 with all of the properties that I foresee ,Zm h ot ﬁcﬁor,mmo
.cc__: a few years you will be able to Neicion, T behicys
1t is happening in this area is .
First, Jei . a 1s a convergence of these fi :
___:/.; ,_N_ﬁ..”;‘ﬂ_p_nw__,ﬁmnzso_om_nm allow one to deal with various mﬂhhmn”.:o_om_nm.
ata and link those data together in arbitrary ways I%Q%ﬁ::m”en-
: systems

‘ ..’_P:&:wm :—ﬂ _—h:. 3 5 0y w.
e ure c— w—ﬂﬂ usern _:—“ﬂ__QOG —U—..:. m nw—-o—.:ﬂ_ sense .—._—0 are
.__J: X —r._un._:_m Q&—N—!&VO Hﬂﬁ—.———ohom%

document Definition

Moduie 1

Hypertext (also called hypermedia) systems

e Al frame and rule based systems

e Object orlented programming systems

e Object orlented DBMS's

Fia. 9 BE
mery el a - y 1
g user-oriented information systems



24 TED J. BIGGERSTAFF
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FiG. 10. Properties of user-oriented information systems.
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full motion video, etc. We can alread
{0 emerge in the PC marketplace.

___..,.Jc systems m:.oé one to operate with arbitrary objects and irregular
li . ::_.,m” one can Intermix text, graphics, speech, animation, etc., and the
cin link this J:_.Q.Emmo: together in rather arbitrary ways. .:,,m: _q. one Q:M
tuke a graphics diagram and put a link from any place in the &mmEB to
any other node (i.e., object) in the database. It is not the kind of thing that
_<_,:_.__~, databases allow one to do very well, because they are designed to
deal E:_., regular data; i.e., fixed-length items that fit nicely into predefined
tubles s;:.d predefined relationships, i.c., tables and relationships that are
_:_,:.f,c,.,.,,w_,..._ In a very regular fashion. Hypertext data are not regular, are not
:_.:xﬁ_ length, do not fit well into predefined tables or predefined .am_m:os-
ships, and are not processed in a regular fashion.

Another property of such systems is that they will allow you to do inferenc-
ing on the :.__.,o_.:._m:o:. For example, one might want to write a rule that
checks to see if there is a link between two frames or objects and if there is
“xecute an operation on the data base. r

I'he merging of object-oriented programming environments and obiect-
orented databases will allow large systems of objects or frames to o_ammﬁ
from one :g_.wcm:os execution to the next. Thus, applications will be aﬂm:m
with ::.ﬂ_ sharing large sets of objects over months or years. Such object mﬁm
inre _.E:ﬁ_‘.:__w too large to be loaded completely in memory with any given
Application. Therefore, applications must have the capability to “pa mu.m mc:ﬁ
..._._...,__,._ of __,.n. object network into memory to be operated on ﬂ:mn object-
“_:c_:_,.,”H C:Zw.x must keep a faithful corespondence _ungnm: the om:.nﬂ

mages that are in an applicati am’ ject i
ot amzm__um_mu“w_,rn:c: program's memory and the object images

I'he properties of this technology are likely to be a combination of the
properties of the individual technologies. That is, it is likely to have man
ol the properties of user interface toolkits and 4GLs. However, it is :wm_w
that the leverage of these technologies will be Eovoz_.osmzw, much _nmm
_..2,._:_{. the applications developed are likely to grow in size and com _mx:,
IFhus, we would not expect order of magnitude productivity mEvHo<%En=~M.
but rather midrange (20% 50%) improvements. The parkinsonian gro 5.
ol the application specific portion of the larget programs is likely to m_.mhm-

‘ _( _: Vere _ _— :— user-orient inrormatio mw._ m
cint _....__—_._. [ (8] _.— ro —_o_: :_q{ ﬂﬁm
X H.O at n VHW
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28  Application-Specific Reuse (LSR to VLSR)

Fhe narrowest kind of reuse is the kind that is focused on a specific

application family, The software factory is ; i
_ are lactory 1s an example of one implementa-
ton ol this wen . v
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“._m:mm library has a high probability of failing. With such a framework
chances of success increase significantly.
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Such o framework of intercomponent standards is critical to all reuse
Olforts, but they become a more and more important factor as the scale of
the components increases. Hence, application-specific reuse with its large
and very large components, amplifies the importance of such standards,

Fhis need to analyze domains via the analysis of existing programs, is
‘pawiing a new class of tools, which we call design recovery tools. These are
reully a generalization of reverse engineering tools. While reverse engineering
(ool are largely aimed at porting or cloning existing programs, design recov-
U1y tools are aimed, in addition, at helping human beings to understand
Progrims in human-oriented terms. Operationally, reverse engineering tools
iare largely concerned with the extraction of the formal information in pro-
frams (that information expressible via programming language formalisms)
whereas design recovery tools are more concerned with establishing a map-
ping between the formal, implementation structures of a program and the
semiformal, domain-specific concepts that humans use to understand com-
putational intentions. For example, consider the mapping from an array of
L structures to the architectural concept process table. 1 have coined the
term “the concept assignment problem™ to describe the problem of creating
such mappings and the concept assignment problem is the central problem
being addressed by design recovery tools.

Fhe understanding developed with the aid of design recovery tools serves
several purposes beyond simply porting application programs, purposes such
N re-engineering, maintenance, domain analysis, and reuse library popula-
tilon. While the subject of design recovery and the related subjects of re-
“ngineering, maintenance, reverse engineering, and domain analysis are
highly important to reuse, they are beyond the scope of this chapter. Suffice

(1 to say that these are all critically important subjects to organizations
engaged in reuse,

2.9 Designer/Generators (LSR to VLSR)

Another class of reuse lacilities currently being developed in research
luboratories are the designer /generator systems. These systems add abstract
design components to the reusable libraries to push the reuse activities back
o the design cycle, Further. they add rules plus a rule-driven shell around
the reuse libraries to allow some automation of the design process. The
fiiles define how 1o specialize (i.e., add the missing details to) the design
vomponents and how to interconnect various design components to form a
complete turget program, Designer /generator systems are typically mixed-
itintive systems with the sofiware engineer providing requirements, missing
designn, and o large dose of ntelligent decision making. By this technique,
the wystems go from simple requirements and specifications directly to code.
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and then after that only participating when the system gets stuck or
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more information. The end pro
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The ROSE reuse system (Lubars, 1987: Lubars, 1990; Lubars, 1991) is & &
an example of a designer/generator system (see Fig. 11). It is a prototype .m a o . ..o.n
that was developed to experiment with this kind of semiautomated reuse £a g m &%
system. ROSE has two libraries—one of design schemas and one of algo- .m, M =T ﬂ £
rithms—both of which are expressed in forms more abstract than code. <«2 M.m, s E
ROSE takes a specification of the target system in the form of a data flow 3 1) W
d abstract operations. It attempts E
)

diagram built from abstract data types an

to design the target system from this specification by choosing design

schemas from its reuse library to fill out the lower levels of the design. The

specifications that it starts with are ambiguous in the sense that most details

of the target system are not determined by the initial specifications. Thus, the

system develops the details of the design by four mechanisms: (1) choosing

candidates for lower-level design schemas from the design library; (2) infer-

ring design details via constraints attached to the designs; (3) transforming

_ and specializing pieces of the developing design by using transformation -

rules (i.e., design rules) from the library: and (4) soliciting information from 5

the software engineer when it gets stuck. Once the design has been worked

(I down to atomic design elements, it is still more abstract than code and goes

_ through another step which maps (i.e., compiles) the design into algorithms
_ specified in some specific programming language.*

_ If the library is reasonably well populated within the target domain, much

of the target program’s development is automated and a working program

_ of a few hundred lines of code can be produced in 10-15 minutes of work. If

the library is incompletely populated, then the process becomes progressively

: more manual depending on the level of design library population. With a — [

_ completely empty library, the system behaves much like a conventional

_7 _ CASE system and requires about the same level of effort as developing the

|(® Algorithms

ROSE reuse system.

ant ’

Domain Types
and Constraints

System
Design Assist
FiG. 11.

target program with a CASE system.
In the case of designer/generator technologies, most of the key factors

7_ that we have identified with successful reuse systems arc defined more by the
__ nature of library components than by the designer/generator technology
itself. In theory at least, one can populate the libraries with elements of any

Requirements
&
Specifications

* The experimental version of ROSE produces target application programs in three lan-

[ guages: C. Pascal, and Ada.
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scale and populate them completely enough to build large percentages of
the target applications out of reusable parts. To date, the technology has
not been tested with large-scale and very large-scale components and we
speculate that this technology may have problems with big components
within a regimen of nearly full automation because such a situation may
impose large inference requirements on the system. Therefore, to date,
designer /generators only have been shown to work reasonably well for com-
ponents between medium and large scale within a well-defined framework
of domain /architecture standards and constraints. It remains to be seen how
well this technology will scale up.

This technology is best suited for very narrow and well-understood
domains because of the large amount of effort necessary to populate the
reuse libraries. In fact, the large effort to populate ROSE’s design library
led to the creation of a project to build a design recovery system called
DESIRE (Biggerstaff, 1989; Biggerstaff et al., 1989).

3. Examples of Reuse Implementation Technologies

This section considers generic technologies that are not strictly speaking
reuse technologies but are implementation technologies that enable reuse:
(1) classification and library systems, (2) CASE tools, and (3) object-orien-
ted programming systems.

These enabling technologies are themselves broad-spectrum or horizontal
technologies in that they can be used to enable reuse in virtually any applica-
tion domain and enable either narrow- or broad-spectrum reuse. Neverthe-
less. because of their inherent generality and the fact that they easily allow
the specification of small reusable components, they tend to orient toward
broad-spectrum or horizontal reuse in their application.

31 Classification and Library Systems

The classification system for reusable components and the library (reposi-
tory) system used to hold those components are two elements of a reuse
infrastructure. These elements largely help define a logical structure for the
application domain, which simplifies the job of finding reusable components
and identifying components that need to be added to the library.

A key classification research problem is how to organize the overall lib-
rary. For any given domain, there often is no single canonical or ideal
hierarchical classification for a given reusable component. If a component
is classified under the function (or functions) it implements, then it becomes
difficult to access based on other properties such as the kind of data that it
operates on. Since it was recognized that one may want 1o find the same
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SOpenent biused on different properties, classification schemes have evolved
_::._ _._.r._ e _:_.__:_,< science approach of allowing a component to be %_HMQ
.."“.,.-__ S iy ol number of its properties (called “facets”) (Prieto-Diaz,
P library system itself is a rather minor, though conspicuous, el
ol e euse infrastructure. Its role can be viewed in two ways: (1) Mm mm:.mowp
ol echinolopy thut is key to the success of the reuse effort 3. (2)as a e
sl inlastracture whose main value is in establishing a n._._woomm conte ﬂ_u_nnM
Herely snhancing the value of associated reuse technology. The ; ﬂﬂ:
fonds to believe that the second view is closer to the truth mnamrﬁ Hoom”g o_N.
Siphasis on the technical importance of the library system can lead o:%_m
Foeus too little on other more critical elements of the reuse project §
Lo puit the nbove notion in concrete terms, when a noavmnw mmummz.m:

U elort, it s often easier to build a library system than to try to _._mzm~U :
st exnctly what is really needed and what kind of Hn:so_omw_.wmwﬁ fits mm
COmpEny s environment. In some cases, a manual library system may be a
petivctly neceptable solution initially and the key technical 5:0425% ma
e i choosing and analyzing the appropriate domains. If a reuse pro cm.um
I oty focused on the design of the library system, then it is quite Wm:uﬂ
thit too Dittle thought has been given to other more H,Euomﬁmﬁ meMQ w
the problem such as the specific domain and components to be _.ncmwa m_,_wn

By 1 not unimportant. It is just not the first thing to think about when
planiing und creating a reuse system.

3.2 CASE Tools

. Figure 12 .__,_ racterizes CASE systems (Chikofsky, 1988, 1989; Fisher
19KK), Most ( >_£.__ systems focus largely on the problem of drafting mm.
providing engineering drawings that describe the design of software mv\mmn_l.:w,

Fhey wre most effective when used to design large-scale systems being devel-
oped by o team of designers,
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CASE systems provide several kinds of diagrams that support various
design methodologies. For example, they typically provide diagrams that
describe data relationships, e.g., data flow diagrams that show how data
flow through the various parts of the system, and procedural representations
from which the source code can be derived, sometimes semiautomatically.
In addition, they typically provide a shared repository and help in managing
the diagrams; document generation capabilities for including design dia-
grams in design documents; and various kinds of analyses that report on
the state of the design. They often do some weak consistency checking, e.g.,
verifying that the right kind of boxes are connected to the right kind of
arrows. Some CASE tools provide limited prototyping capabilities such as
screen layout facilities. With these tools, one can design the screen interface
to the target system and then generate the interface code, much like the
forms designers discussed earlier.

The major benefit of using a CASE tool is that the evolving design is
recorded formally, e.g., in data flow diagrams, statecharts, predicate calculus,
etc. The real value of CASE tools arises out of using these design representa-
tions as a working model during the development process. The act of using
design formalism forces many design issues out into the open that would
otherwise remain hidden until late in the design process. Moreover, it unco-
vers omissions in the design. But the most important effect is the migration
of the design model into the heads of the designers. After all, it is the in-
head knowledge that one uses during the whole developmental process.

Productivity improvement with CASE tools is often modest. Some savings
result because design updates are easy with CASE tools and because the
design and the code are integrated and often managed by the CASE system.
But overall, the direct savings are modest.

The major, but indirect, benefits of CASE systems come during the testing
and maintenance phases. Because the details of the target design are
expressed early, the errors and the defects can be seen and detected early.
This tends to lead to a higher-quality system with fewer defects to correct
after the system has been delivered. The productivity improvement arises
largely because postdelivery defects cost two orders of magnitude more to
correct than those corrected during the design phase.

It 1s difficult to evaluate CASE tools against our proposed set of reuse
properties because these properties are more sensitive to the nature of the
reuse application than to the use of CASE tools. Consequently, the produc-
tivity and quality improvement that result strictly from the reuse aspects of
CASE is usually quite modest and is often overshadowed by the productivity
and quality improvement due to early defect detection.

An inherent value of CASE tools to reuse applications is the infrastructure
support that CASE tools provide to the reuse process. Another inherent

AN ASSESSMENT AND ANALYSIS OF SOFTWARE REUSE 33

vilue of CASE tools is that they tend to foster reuse of software designs in
wddition to reuse of code. Since designs are more abstract than code, they
fend to have a higher opportunity for reuse and thereby have a higher payoff
potential,

3.3 Object-Oriented Programming Systems

Object-oriented systems (Cox, 1986, Ellis and Stroustrup, 1990; Goldberg
nnd Robson, 1983; Meyer, 1988; Saunders, 1989; Stroustrup, 1986, 1988)
iipose o structure on a program by developing a graph of related classes of
ubjects (see Fig, 13). For example, one could define a rectangle as the class
ol displayable, graphic objects that are rectangular and relate it to its super-
tlaxy of “graphic object,” i.e., the class of all displayable, graphic things.
Further, one could define a subclass of rectangle called a window, ie., a
displuyable, graphical rectangle that has additional properties and behaviors
over those of a rectangle. For example, a window is a displayable rectangle
thint can accept input from the keyboard and mouse, and produce output
Within its rectangular aperture. One could design other subclasses (i.e., speci-
ilizations) of graphic objects such as circle, ellipse, and so forth.

As shown in Fig. 14, each such class corresponds to some set of real-
wuorld abjects. For the user interface classes, the real-world objects might be
praphical manifestations that are drawn on a computer screen. For example,
i tectinngle could be part of a line drawing; or with certain additional charac-
terintics, it might be a window ; or with even more specialized characteristics,
i might be a tiled window—i.e., a window with panes in it; or it could be a

Arowser, ey, o window that knows how to display graphs; and so forth.
ﬂnmﬁw - — Superclass
Cliole Ellipse Rectangle --§— Class
- -
H H Window  -a)}— Subclass
Tiled

Window
Browser

Fici, 13 Example class hierarchy
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FiG. 14. Classes and real-world objects.

Each class has two kinds of information associated with it, as m:osﬁ.m:
Fig. 15. One is state information that defines an instance of the class. For
example, a rectangle class would have instance variables a.m:a » that ammzo
the position of its upper-left corner. Further, it would have instance variables
that define its length and width.

The second kind of information associated with a class is a set of so-called
methods that define the behavior of that class. These methods manage the

State

Graphic int x, y, length, width;
Object

Circle Ellipse Rectangle \

‘ ! W
L ® Window Methods
ot s display, origin, corner,
center, border, fill
Tiled
Window
Browser

FiG. 15. Structure of classes.
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state information defined by the instance variables. Examples of such meth-
ods are display, which draws the rectangle on the screen: origin, which
returns the (x, y) position of the rectangle on the screen: and so forth.

One of the important object-oriented concepts is inheritance, which is also
called subclassing and is illustrated in Fig. 16. The idea is that if I already
have the definition of a rectangle and want to define something that is a
specialized instance of rectangle, like a window, all I have to do is specify
the additional data (i.e., instance variables) and behavior (i.e., methods) of
a4 window over that of a rectangle. In other words, a window is something
that has all of the same state information as a rectangle but, in addition,
has some state specific to it. For example, a window might have a canvas
containing a set of pixels to be displayed. Further, it might have a list of
control facilities like buttons and scrollbars.

In addition to the extra state information, a window may have additional
methods. And it might also replace some of the rectangle’s methods (e.g.,
the display method of rectangle is replaced by the display method of window
in Fig. 16).

1o put it more abstractly, classes represent the definition of the state and
the behavior of the set of all objects of a given type. An individual member
ol that set of objects is called an instance of the class or alternatively, an
abject.

Methods Classes

croate, destroy, dump g

Instance Variables (State)

wip int object-number;

Graphic
Object

. comer, g | Rectangle |- int x, y. length, width;

<@ | Window wfp- int canvas( intint |;

pointer buttons, bars, .

Window's Methods Window's Instance Variables Inherited From

Oinate, degtray, dump int object-number, Graphic Object

Int x, v, length, width; Rectangle
vas| intint ]; Window
buttons, bars,

T
Fiai, 16, Subclassing and inheritance.
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An instance is implemented as a data record that contains all of the state
information that describes the individual object. This is illustrated in Fig.
17. Thus, a tiled window instance record would contain all of the state
information unique to tiled windows, plus all the state information inherited
from window, plus all the information inherited from rectangle, plus all the
state information inherited from graphic object. The record containing all
of that state information represents an instance of a tiled window.

Now, when a method is called, it performs some operations that use or
change the state information in the instance record. Examples of messages
are display yourself, change your size, move the canvas under the window
aperture, and so forth.

One of the most important properties of object-oriented systems is that
they impose an extra layer of design discipline over conventional languages.
They allow one to formally express additional information about the archi-
tectural organization of a system beyond what one can express in a typical
high-level language such C or FORTRAN. More to the point, they insist
on that architectural information. They insist that one cast the design of a
system in terms of a set of related classes that correspond in a natural way
to the real-world entities that the system is dealing with. This discipline helps
one to develop a cleaner and more elegant design structure, in the main,
because it forces the designer to explicitly think about the real-world entities
and their interrelationships, and this enhances the reusability of the resulting
classes.

Another valuable property of object-oriented design is the fact that classes
are natural reusable components. Because much of the state information is
“hidden™—i.e., accessible only to the class’s methods—the classes have fewer
constraints that tie them to their original context and they can be easily

mwﬂwﬂo object-number
L] /
o Rectangle

N

%, ¥, length, width

Window canvas, buttons, bars, .
R Tiled
Window ik
Y Tiled
OO ~— 2 Window
Instance
Record

Manifestation
of Instance
Record

FiG. 17.  Instances of classes.
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telocated and reused in new contexts in other programs. And because classes
are conceptually larger-grained components than functions, their reuse tends
to provide better productivity and quality improvement than reuse of
Hinctions,

O the other hand, from a reuse perspective, classes are still relatively
sl grined components and one would really like even larger-scale reus-
able components. Fortunately, object-oriented systems also provide a plat-
form lor ereating larger-scale reusable components, called frameworks. A
Jramework is a set of classes that taken together represent an abstraction or
putnmeterized skeleton of an architecture.

Ihe final benefit of object-oriented development is inheritance. It reduces
the amount of programming effort necessary. Because one already has some
tunctionality defined in an existing class, building a specialization of that
class omuch simpler than starting from scratch. Some of the data and some
ol the functions are already written and can be inherited from the superclass.

I he reuse benelits of object-oriented programming systems are analogous
fo e teuse benelits of CASE systems. That is, the productivity and quality
Benelitn wie more sensitive to the existence of a reuse infrastructure than the
fuct the abject-oriented programming is involved. Nevertheless, we must
acdindt that object-orientation mitigates toward somewhat larger-scale reuse
that function orentation and therefore, there is a tendency toward
fprovements in productivity strictly due to the object-orientation. Even so,
ject oniented languages are inherently broad spectrum and tend to most
ety enable smalls or medium-scale component reuse. Therefore, the pro-
ductivity and quality gains due strictly to the object orientation tend to be

et HEwould be o puess substantiated only by intuition but these gains
woulid probably be in the 5 10% range. Additional productivity and quality
Benetitn ure derived from the reduction in defects that accrue from the cleaner

desipgnn that object-oriented programming styles foster. Still further benefits
coan b derived trom domain-specific facilities that particular object-oriented
leinges or environments provide, for example, the rich user interface
Budding blocks in languages such as SmallTalk.

An with CASE systems, the infrastructure provided by object-oriented
Beptinpen s of significant value in the course of implementing reuse libraries.
MMthouph significant additional work is required to implement a complete
ad wsetul reuse system, an object-oriented development environment pro-
vides o hewd wtart

b sty there are o number of different reuse technologies that can
prove productivity and - quality in - software development. Not all
dpponehes wie right for every organization, but among the approaches, it
ooy ikely that most orgamizations can find something that will fit their
cubture and needs, There are no magic wands or silver bullets that will give
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an organization orders of magnitude improvement over a/l the software that
it develops. But there are a number of individual approaches which if used
conscientiously within receptive contexts, will provide significant increases
in productivity and quality.

4. Effects of Key Factors

The objective of this section is to explore the relations among the reuse
success factors and in the course of this exploration, to develop an analytical
model that quantifies the relationship between some of the key factors and
the productivity and quality benefits that they produce. We will also
explore—in an intuitive manner—the relationship between specific reuse
technologies and their potential for productivity and quality improvement.

4.1 Relationships among the Reuse Factors

Cost is arguably the most important metric in software development and
it can be viewed as the sum of the following costs:

® (Cost of developing new custom components for the target software.

® The taxes on the reused components (i.e., the amortized costs to develop
and maintain the reusable components).

e Cost to assemble the components into a system (i.e., integration or
“plumbing” costs).

e Cost to remove the defects from the target system, which breaks down
into two costs: (1) cost of removing defects from the component
software and (2) cost of removing defects from the integration software,
i.e., the plumbing software.

Figure 18 shows how these various costs are affected by the key factors that
we used to characterize successful reuse systems. We can see that among the
independent factors, the degree to which the domain is understood, the
breadth of the domain chosen, and the specific kind of reuse technology
have an effect on three key, dependent factors: (1) the amount of reuse
within the target application, (2) the scale of the components being reused,
and (3) the intercomponent connection standards. These in turn affect sev-
eral elements of the total cost. The larger the amount of reuse (1.e., the larger
the proportion of the application built out of reusable components), the less
one has to spend on developing new components for the target application.
Similarly, the larger the proportion of reused components in an application,
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i 18, Relationships among key factors and cost.

the less one has to spend on removing defects, because the reused compo-
pents hinve fewer defects to start with. The number of defects in a reusable
cotnponent penerally decreases the more the component is reused.

Fhe senle of components typically affects the cost to assemble the compo-
nents Assembly of larger-scale components requires less plumbing and intro-
ducen tewer plumbing errors, both of which reduce costs. This is the same
kil of cost reduction phenomenon seen in hardware: it is cheaper to build
i device out of very large-scale integration (VLSI) components than out of
ion (SSI) components.

Finally, mtercomponent standards reduce plumbing costs mainly by
teducing the amount of specialized code that must be developed to hook
components together, The more highly standardized the interconnections,
the less effort it requires to assemble the applications out of components.
Ihe Tollowing section will examine this phenomenon analytically.

Figure T8 should make it clear that the final effect on the software cost is
wiotght by o mixture of technology and business decisions. While it is
fiportant to carefully consider exactly what reuse technology is right for
the organizntion and problem at hand, one must keep in mind that the
ellectn ol the best reuse technology can be nullified by ill-considered business
decistons. For example, a poor choice of an application domain (e.g., one
that the orpganization knows little about or one that is rapidly evolving), or
w decislon o secommodate too broad a part of the application domain, can
cvetwhelin wny productivity or quality improvement potential provided by
e tense techinology. Therefore, while we focus much of our attention in
b chpter on reuse technologies, successful reuse can only be achieved
o good technology and business decisions.

st loncn e
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The choice of reuse technology significantly effects two of the most impor-
tant factors cost influencing—the scale of the components and the percent
of the application that can be built out of reused parts. One would like to
know the answer to the following question: Is there a simple relationship
between the reuse technology chosen and the productivity and quality bene-
fits to be expected? The simple answer is no. The relationship is not really
independent of the other factors (e.g., intercomponent standards). For
example, one can make ill-conceived choices that result in poor intercompo-
nent standards. which in turn lead to interconnection costs that overwhelm
all other costs. Similarly, choosing too broad a domain can easily reduce the
total amount of reuse to the point where the profit from reuse is minuscule
compared to the costs to develop new application code.

Nevertheless, intuition suggests that there is a relationship, given the
assumption that choices for other factors are reasonable. We will assume a
reasonably good domain choice with stable technology and components that
have a high potential for reuse. Given these assumptions, there does seem
to be a rough relationship between the technology chosen, the scale of the
components implied by that technology, and the percent of the target appli-
cation that is constructed out of reused components. And since the dollar
savings to be realized from reuse correlates directly with the percent of the
target application that is constructed out of reused components, we will
express the benefits of reuse in terms of the potential percent of reuse in the
target applications rather than dollars. Figure 19 is the author’s perception
of the relationship among technologies, component scale, and the percent
of the target application that can potentially be built out of reusable compo-
nents.* It is intended solely as a conceptual description and is not for estima-
tion purposes. To this writer’s knowledge, no one has yet done the empirical
research necessary to establish a relationship between technology choices
and the productivity and quality improvements.

All other things being equal, technologies that fall in the upper right-hand
portion of the diagram have the potential to provide large improvements in
productivity and quality; i.e., generally more than 50% cost reduction, Those
in the lower left-hand portion can provide 0-20% cost reduction, and those
elsewhere in the chart are probably somewhere in between.

However, let me remind the reader once again that this is at best an
intuitionally based relationship that suggests potential, not one that guaran-
tees specifics. It is easy in specific cases to manipulate the other factors to
completely confound the relationship. Now let us take an analytical look at
the relationship between some of the reuse factors.

* Since each of the technologies shown in Fig. 19 allows quite a bit of implementation
flexibility, they are drawn as boxes to indicate ranges along both axes.
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FiG. 19.  Productivity and quality improvement estimating heuristic.

4.2 A Quantitative Model of the Relative Amount of Integration Code

I'his section introduces an analytical model to predict the effects of compo-
nent scale and intercomponent standards on the plumbing costs and thereby
on the eventual profit wrought by reuse. We will do this by examining :zm
Amount of code required to connect the reused components into a target

upplication program for various levels of component scale and intercompo-
nent standards,

421 Definitions

Figure 20 defines the key model variables. Specifically, we want to deter-
mine PAC-the proportion of the total code in the application that is com-
mitted to connecting the reused components—because PAC is proportional
(0 the overhead costs associated with reuse. The desired situation is where
PAC v i very small proportion of the total code, ideally near zero. As
prodicted by our earlier qualitative analysis, this ideal is approached in the
Cine ol large components with good intercomponent standards. We will see
that in the case of poor intercomponent standards, PAC can exceed 0.7
(he 70%) of the total code in the target application, whereas with moo.a
mtercomponent standards and relatively large components, PAC approaches
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Proportions
PAR PAC PAN of Total

+ + + Code

AT
| A
i orete e e Pevereteiatateteted

- Reused [ Connective New
o fefet fety

Code e Code

¢

RLOC

* Lines

NLOC of
Code

FiG. 20. Divisions of program containing reused components.

zero. However, even with good intercomponent standards, if the components
are too small, PAC can be up to 0.5 (i.e., 50%) of the total _.Woan. \
Table I contains the qualitative definitions of the model qm:mﬂ._nm with Em
dimensions of each variable shown in parentheses. By 83@:20.:.. we will
often use LOC in the text as an abbreviation for “lines of noaw.“ .
ACC characterizes the interconnection standards of a reuse __g.m_.%.*. Itis
the average number of lines of code that must be written to make a single

TaBLE |

DEFINITIONS OF VARIABLES IN MODEL

Inputs characterizing library

ACC Average connectivity complexity (LOC/Connection)
SC Average scale (LOC)
Inputs characterizing target application
AFI Average Fan-In (Connections)
NLOC Number of lines of new code (LOC)
RLOC Number of lines of reused code (LOC)
Outputs )
CLOC Number of lines of connection code (LOC)
NRC Number of reused components in target application (no. of components)
P Ratio of new LOC to reused LOC (dimensionless) . ,
PAC Proportion of connection code in target m_u_u_woﬂ_o: ( J__Bm:w_o:_nmm.
PAN Proportion of new code in target application E_:._w:m_oa_nm&
PAR Proportion of reused code in target application ﬁ dimensionless)
TLOC Total number of lines of code in target application (LOC)

* The ACC characterizes the expect number of lines of code needed to make a no::nng_cd
to a component. It is an average computed over many uses o_,,m set of data-related nmauc:msv
within different applications and is a convenient characterization of expected cc:s.mns,e‘;x prop-
erties. It is not meaningful with respect to specific individual ooiﬂo:aamm or specific __._n__S_‘u:x_
applications. It is the computed average over all noﬁ_ﬁw:a_.:m ina ﬁ._.c_.xﬁ. m:..J ﬁ.:_mw,.d. _..:mr
number of reuse experiences of the total lines of connectivity code _.n_sz:ﬁ_ in those applications
divided by the total number of connections required in those applications
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use of a component in the target application. It is a measure of the code
that wires together the new code and data structures with the reused compo-
nents and data structures, as well as the reused components and data struc-
tures with each other. If the data structures for conceptually equivalent
domain entities are standard across the whole library and there is a pattern
of standardization among the function interfaces, object protocols, etc. then
ACC is small. As a trivial example, consider a set of routines that operate
on strings where all strings used by all of the functions are stored in a
standard format. The amount of code needed to use a string output by one
ol the functions as input to another function will be small. If the string
formats required are different for the two functions, the amount of code to
iterface them will be significantly larger. While this example is trivial in
comparison to real components, it illustrates the nature of the standards
that we are discussing.

In the best case, ACC is a single statement, which is the statement used
10 invoke the component. In the real world, this is seldom the case. Usually,
the calling interface requires different forms of the data or requires data that
% not readily available but must be computed before the component is
invoked. Typically, the plumbing code characterized by ACC includes such
things as computation of required data; reorganization of existing data
structures (e.g., transforming a zero-end-marker string into a length-tagged
sring); the creation of new data structures required for input, output, or
operation; database creation; database operations; file operations; and so
[orth. This connectivity code can be extensive if the various data-related
components hew to widely different standards.

Although the ideal for ACC is one, it is often not achieved. An example
serves o illustrate this. In order to reuse an existing parser, one often has
{0 Write i postprocessor that transforms the parse tree computed into a new
form that fits the context of a different system. Often other computational
extensions also need to be made for the new context. All of this code must
b wiitten from scratch and contributes to the average connectivity complex-
Iy for cuch of the components within the reuse library.

I'he second model input variable that characterizes the reuse library is SC,
(e averipe seale (ie., size in LOCs) of the components in the library.

Fhe other key inputs are defined by the target application program. AFI
I the wveringe number of connections required for a typical component. Each
Wil connection requires ACC lines of code on the average.

Al example 18 in order to clarify the true nature of and relationship
hetween ACC and AFIL Even though in the model we are considering
AVEREe connmections, a concrete example using individual connections and
pliinbing vode will make the relationship clearer. Let us suppose that
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f(x,y,2) is a reusable function. The plumbing code required to integrate
Jinto a program consists of two parts: (1) the set of code that packages
and formats the inputs to f—for example, x, y and some global data
structure g—and later unpackages and reformats any outputs of f—e.g.,
z and the data within g; and (2) the code that makes the data transfers
happen—e.g., a call statement or a process spawn. If the packaging/
unpackaging code is the same for every use of f in the program, then
one can write functions to do the packaging and unpackaging, and
amortize that code over the many invocations of f in the new program.
On the other hand, if we have several distinct kinds of uses of f, each
requiring packaging/unpackaging code that is so different that we cannot
use a single set of functions to do the packaging/unpackaging, then we
must amortize each distinct set of packaging/unpackaging code over its
set of uses and use the average of those to compute ACC. Thus, only
in the simplest case do the lines of code counted by ACC correspond to
a specific programming artifact (e.g., a subroutine or function) within a
target program. More generally, ACC represents some proportion of such
artifacts averaged over many uses.

The next two input variables define the number of lines of code in a target
application program that are reused (RLOC) and new (NLOC).

From these model input variables, we calculate CLOC, the number of
lines of code required for connection of the reused components into the
target application. TLOC (the total number of lines of code in an
application) can also be calculated from these inputs as can the various
proportions of code types in the application—PAR (reused), PAC (con-
nection), and PAN (new). The average number of components in a target
application—NRC—can be computed from these variables. We are most
interested in how PAC changes as we vary our assumptions about the
degree of intercomponent standardization and the relative scale of the
components.

We introduce another variable P, which is the ratio of new code to reused
code. This ratio is useful because we are less interested in the absolute
magnitudes of NLOC, RLOC, and CLOC than in the relative proportions
of these quantities and how those proportions change under differing sets of
assumptions.

The variables ACC, SC, AFI, RLOC, CLOC, and NLOC are ripe for
empirical studies to characterize various reuse libraries and compare the
library characterizations against the results of reusing components from
those libraries in real application programs. This would provide some meas-
ure of goodness for reusable libraries and eventually result in standards
against which reuse libraries could be measured.
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4.2.2 The Model

The following equations define the relations among the variables.

TLOC = NLOC + RLOC + CLOC (4.1)
RLOC
PAR 5 —=
TLOC (42)
PAR * TLOC RLOC
NRC = - & (4.3)
sC

CLOC = NRC = AFI + ACC
_ RLOC * AFI « ACC

= (4.4)

p - NLOC
RLOC (4.5)

CLOC

PAC =—
TLOC (40)

Now we work PAC into a form that is more amenable to approximation.

NRC « AFI « ACC

PAC = —
TLOC

Using the first form of Eq. (4.3)

Bt o W»wmromv } ?ﬂ * >qu
SC TLOC
which allows us to cancel out the absolute quantity TLOC leaving
T>ﬁ[um>w*>ﬁ~*>ﬁﬁ

& (4.7)

We want Eq. (4.7) in a form that involves only AFI, ACC, SC, and P, so
we relormulate PAR.

RLOC
TLOC

PAR =

RLOC
RLOC + NLOC + CLOC’
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Using Eq. (4.4) for CLOC, we get

RLOC
PAR = v

RLOC = AFI « ACC
RLOC + NLOC + =&

RLOC * SC Jp——-
SC * RLOC + NLOC % SC + RLOC = AF1 + ACC

RLOC % SC |
" RLOC * (SC + SC * P + AFI  ACC)

SC e
" SC +SC *P + AFI * ACC

etz B8 . (4.8)
SCw (1 +P) 4+ AR » RCC

Substituting Eq. (4.8) into Eq. (4.7), we get

SC u AFI * ACC
e

PAC = SC v (15 P) + AFI » ACC e

Canceling our SC, we have a form that is good for approximation analysis.

Y

AFI « ACC v 4.9)

v>nnﬁm0*a_+vv+>w~*>nn

Now let us consider three cases:

i i i ion standards
1. a library with poor Eﬁnoonzn.n:,oz S
2. a library with good interconnection standards but small oo,ﬁvcz_oim
». a library with good interconnection standards and relatively large

components

For case 1, we define a library with poor standards as one in ua&_or >wﬁﬂm_~”
equal to SC. In other words, it takes m_uoﬂmp as much code to EMF ‘Mmm:.
interconnection to a reused component as Is in the reused oo:._._wozn_n._ i mmﬂ
on the average. Substituting SC for ACC in Eq. (4.9) and canceling SC,

gives us

AFI

R (4.10)
(14 P)+ AFI

PAC=
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Notice that the size of the component does not appear because of our destan-
dardization assumption. This is not just an interesting theoretical case. Anec-
dotal evidence suggests that it often happens that SC and ACC are nearly
the same in libraries of casually assembled components.

Figures 21a and 21b show two views of how PAC is affected by various
values of AFI and P for case 1. Notice in Fig. 21b in particular that where
P =0, in the limit, PAC approaches 1.0 as AFI approaches infinity. How-
ever, for all P, we see that the proportion of connection code grows as AFI
grows. While for large Ps the relative amount of connection code decreases,
it does 5o only because the relative amount of reused code is diminishing.
This relative decrease in PAC is not cause for rejoicing, because the absolute
amount of work may still be substantial. More to the point, the amount of
work necessary to reuse code can be more than the amount of work required
10 rewrite the reused code from scratch. Looking at the PAC/PAR ratio,

PAC
—— = AFI = Fan-In
PAR
1.00 T
0.75 -
(a)
PAC 05 A
AFl = 4
AFl = 3
Ll AFl = 2
AFl = 1
1 2 3 4 5 6 ¥
P (New/Reused Ratio)
1.00 -
P=0
0.76 4 P=1
P=2
- P=3 b
PAC 06 4 B )
..\\
0.8 4+ -
| 2 3 4 5 6
AFl (Average Fan-In)
Fici 21, Proportion of connection code for libraries with poor standards
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we see that since the fan-in must be at least |, we always have to do at least
as much work to connect the reused components as we would do to rewrite
the reused code from scratch and if the fan-in is greater than 1, we have to
do more. Admittedly, case 1 is a boundary case, but we must remember that
there is a neighborhood around this case where reuse does not really payoff
and one needs to structure their strategy to avoid this neighborhood.

Case 2 is a library with good standards but relatively small components.
We define good standards to mean that ACC = 1. Thus, Eq. (4.9) becomes

AFI
PAC=————.
SC*(1+P)+ AFI
We define small components to mean that SC = AFI, or in other words, the
size of the connection network for a component is about the same as the
size of a component. This produces

(4.11)

FAGS
2+P
which is the same curve as that defined by AFI = 1 in Fig. 21 (case 1). Thus,
the relative (and usually the absolute) amount of connection code is high.
In fact, if we look at the ratio of the connectivity code to reused code, we
see that we are writing as much new connectivity code as we are reusing.

FAC AFL_3C _
PAR SC SC

This is not a good deal. We might as well rewrite the components from
scratch. However, the payoff significantly improves in the case of larger
components, as in case 3.

For case 3, we assume good library interconnection standards (i.e.,
ACC = 1) and relatively large components in comparison to their intercon-
nections. Large components relative to their interconnections will be taken
to mean SC> AFI, and more specifically

SC = 10"« AFL

This is a convenient approximation because it provides a simple if approxi-
mate relationship between PAC and component scale. That is, for AFI near
1, n is approximately log,, (average component size) and for AFI near 10,
n+ 1 is approximately log, (average component size), and so forth. Thus,
n is a relative gauge of the component scale. If one makes a few simplifying
assumptions about AFI's range, we have an independent variable that ranges
over the reuse scale, namely, SSR, MSR, LSR, VLSR, etc. Thus, we can
easily relate the approximate (average) amount of work involved in connec-
tion of reused components to the scale of those components.

(4.12)
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Using this approximation, Eq. (4.9) becomes

PAC = — >|ﬂ|||
10" « AFI % (1 + P) + AFI'

Canceling out AFI, we get

L 4

PAC =- —
10"« (1+P)+ 1 G19)
Forn=1,23 ..., we get
1
PAG s PAC, ,=_ 1
10 P+ 11 27100+ P + 101
PAC, = & e
1000 = P + 1001
and so forth. Thus, for n > 0,
PAC,; =— :
approx ﬁﬁ._h.v

10"« (1 +P)

We can see that for at least one order of magnitude difference between
the component scale (SC) and the average number of connections (AFI)
the amount of total connection code is below 10% (for n = | and p = 0) m:m
well below that for larger n’s. Thus, for libraries with good interconnection
_,,::Emﬁm and large components, the amount of work involved in intercon-
:c_,,.:c: 1s small relative to the overall development.

._,_8 umw@m. of reuse is seen quite clearly in this case by examining the ratio
ol connection code to reused code, which is approximately the inverse of the
component scale for small AFT. ,

PAC_ 1
PAR 10"
Thus, the connection overhead is relatively small for MSR components

ind inconsequential for LSR components and above
Figure 22 summarizes the results of this analysis.

423 Proportion of Reuse Code (Actual and Apparent)

Il rather than just examining the proportion of interconnection code, w
would :._:,. to know the proportion of reused code (and by mEn:nm:o:.SM
proportion of code to be developed), we can perform a similar set of alge-
braie manipulations to derive the formulas for PAR in each :,_, the SWH
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cases considered earlier. The results of these derivations are:

CASE 1:

CASE 2:

CASE 3:

FiG. 22.

Summary of case analysis

%, 8

PAR = o AH
T

2+P
ey o

10" (1 +P)+1°
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The .mcaz._c_m for case 3 is fairly complex to compute and it would be
convenient to have a simpler approximation to PAR for case 3. The apparent

.?,o_uozmou of application reuse (APAR) is a useful approximation. APAR
1s defined as

~ RLOC

APAR = it
RLOC + NLOC

which can be expressed as

1+P

APAR =

In other words, APAR ignores the connection code, assuming it to be
ms._m:H Ov&ozm? this approximation only works for some situations. The
question is, Under what circumstances is this a good approximation of PAR?

Figure 23 shows the APAR curve in comparison with the PAR curves for
case 2 and several parameterizations of case 1. It is clear from this figure
that APAR is generally not a good approximation for either case 1 or case
2 Ioémﬁ_,. m..o; case 3, APAR is a pretty good approximation under most
parameterizations. For n > or = 2, the connectivity does not significantly
alter the percent of reused code and APAR is a good approximation. For
n =1, the worst case is when p = 0, and even in this case, the difference is
only about 0.08. The remaining integral values of p (greater than 0) differ
by no more than 0.02. For n = 0, the formula reduces to case 2. This leads

PAR
1.00+

APAR
AFl=1 (& case 2)
AF|=2

- 0.754

P (New/Reused Ratio)

= el » . *
Fici. 23, Proportion of reuse code (apparent and real).
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to the following rule of thumb:

If on the average, the component scale (SC) is one or more orders oﬁEm.—mEE_.._.n
greater than AFI (the average interconnection fan-in) and the reuse __GE.Q is
well standardized (ACC is near 1), the connectivity code has no appreciable
effect on the reuse proportions and APAR is a good approximation for PAR.

424 Effects on Defect Removal

In the previous sections, we have focused largely on the excessive plumbing
costs that arise from poorly standardized libraries and small components.
The analytical model also has cost avoidance implications with respect to
defect removal that may be as great or greater than the cost avoidance that
accrues from well-designed reuse regimes.

The important facts to note are:

e Since reused code has significantly fewer defects than new code, defect
removal from reused code is usually significantly cheaper than from
new code. It is not unusual for there to be anywhere from several times
to an order of magnitude difference between these costs.

® Since connective code is new code, it will exhibit the higher defect rates
and therefore, higher defect removal costs than reused code.

When considering the effects of reuse regimes on defect removal, the oo:n__..T
sions are the same as when considering the effects of reuse regimes on basic
development, i.e., make the connective code be as small as possible, thereby
making PAR as large as possible. Each line of reused code will cost several
times (and perhaps even an order of magnitude) less for defect removal than
a line of new code or connective code. Therefore, the less connective code
we have, the better. Thus, we are drawn to the same conclusions as above:
to make defect removal as inexpensive as possible, we need to standardize
our libraries and use large components.

4.25 Conclusions from the Model

In summary, the conclusions drawn from our analytical model confirm
those that we reached by qualitative argument and case study observations:

e [ibrary standards (most often expressed in terms owmﬁﬁ:am:cmﬂ domain
data structure and protocol standards) are effective in promoting reuse.

e Large components reduce the relative effort to interconnect _.mcmm_u_n,
components in all but those libraries with the poorest level of
standardization.
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Therefore, the conclusion must be to develop large components (which tend
toward domain specificity) and use a small set of (domain-specific) data
structures and protocols across the whole library of components.

5. Futures and Conclusions

5.1 Futures

If I try to predict the future evolution of reuse, I see two major branches—
vertical reuse and horizontal reuse—that break into several minor branches.
In the vertical reuse branch, I see large-scale component kits becoming the
“cut-and-paste” components for end-user application creation. That is, more
and more applications will be constructed by using folders of facilities that
are analogs of the c/ip art that is so widespread in today’s desktop publishing.
Of course, such end-user programming will have inherent limitations and
therefore, will not replace professional programming, only change its span
and focus.

The other major evolutionary branch within vertical programming evolu-
tion will be the maturation of application-specific reuse, which will evolve
toward larger-scale components and narrower domains. This technology will
be used largely by the professional programmer and will probably focus
mos'ly on application families with a product orientation. Fven though the
productivity and quality improvements will be high, as with all vertical reuse
technologies, the motivation in this case will be less a matter of productivity
and quality improvement and more a matter of quick time to market. More
and more software companies are succeeding or failing on the basis of being
early with a product in an emerging market. As they discover that reuse will
enhance that edge, they will evolve in toward reuse-based product
development.

Interestingly, I doubt that any of the vertical reuse approaches will long
retain the label “reuse,” but more likely, the technology will be known by
application specific names, even though, in fact, it will be reuse.

The second major evolution of reuse technologies will be in the area of
horizontal reuse and here I see two major branches—systems enhancements
and enabling technologies. As technologies like interface toolkits, user-orien-
ted information systems, and 4GL-related technologies mature and stabilize.
they will become more and more part of the operating system facilities. This
is not so much a statement of architecture, in that they will probably not be
tightly coupled with the operating systems facilities, but more a matter of
commonly being a standard part of most workstations and PCs. In fact, a
litmus test of the maturity of these technologies is the degree to which they
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are considered a standard and necessary part of a delivered computer. One
can see this kind of phenomenon currently happening with the X windows
system. Within 10 or so years, it will probably be difficult and unthinkable
to buy a workstation or PC that does not have some kind of windowing
interface delivered with it.

The other major branch of horizontal reuse is the set of reuse enabling
technologies. More and more these technologies will merge into a single
integrated facility. The object-oriented language systems and their associated
development environments (i.e., the integrated debuggers, editors, profilers,
etc.) will be integrated with the CASE tools such that the design and source
code become an integral unit. The CASE tools themselves will be enhanced
by designer/generator systems to allow them to do increasingly more of the
work for the designer/programmer by using reuse technologies and libraries.
Finally, I expect to see both the CASE tools and programming language
development environments merge with reverse engineering, design recovery,
and re-engineering tools and systems. These reverse engineering, design
recovery, and re-engineering tools all support the population of reuse librar-
ies as well as the analysis, understanding and maintenance of existing sys-
tems. Without such systems, the reuse libraries will largely be empty and the
technology impotent. These are the systems that allow an even more primi-
tive kind of reuse, that of bootstrapping previous experience into formal
reusable libraries and generalized reusable know-how.

Thus, while horizontal reuse and vertical reuse will evolve along different
paths, both will move from independent tool sets to integrated facilities and
consequently their leverage will be amplified.

5.2 Conclusions

There are no silver bullets in software engineering, and reuse is not one
either, although it may come as close as anything available today. While not
a silver bullet or cure-all, it does provide many opportunities for significant
improvements to software development productivity and quality within cer-
tain well-defined contexts. If one understands where its works well and why,
it can be a powerful tool in one’s arsenal of software development tools and
techniques.
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