
Generation Flexibility versus Performance

Ted J. Biggerstaff

Microsoft Research

One Redmond Way, Redmond, WA. 98052-6399

Tel: (425) 936-5867, fax: (425) 936-7329

Email: tedb@microsoft.com

URL: http: //research.microsoft.com/~tedb/index.html

Abstract

Defining domain specific abstractions for generator systems leads to a quandary between choosing
abstractions that exhibit powerful programming amplification through the combinatorial opportunities
provided by composition, and choosing abstractions that can be easily transformed into high performance
code. Most generation systems opt for high levels of abstraction to achieve programming amplification and
as an added benefit get safety, understandability, and several other -ilities. As a consequence, the
performance of their generated code is often compromised. My hypothesis is that a new generator
architecture is needed to achieve both high levels of abstraction and high performance code. A generator
based on such an architecture has been implemented in Common LISP. It is called the Anticipatory
Optimization based generator because it allows the component and transform writers to anticipate the
kinds of optimization opportunities that might arise and to prepare an abstract, distributed plan that
attempts to achieve them. Based on a small number of examples that we have tested, the approach appears
promising, allowing high levels of abstraction, flexibility, and performance. (See Biggerstaff98a-b.)

 Keywords: Domain specific, program generation, transformations.

Workshop Goals: List any goal you have, such as to solve a particular problem.

Working Groups: Groups on subjects like generators and transformation systems.

1 Background

Program generators compile high level, compact, (and usually domain specific) languages into
conventional programming languages like C or Java thereby improving programming
productivity, code safety, ease of understanding, and so forth. The same properties that make
such domain specific language (DSL) representations appealing make compiling them into high
performance code difficult. The performance problems arise because DSLs tend to delocalize
performance related elements of the target code and introduce high levels of redundancy into the
target code. The various approaches to optimizing the generated code (e.g., conventional
optimization, optimizing transformations, specialization, etc.) all have practical problems (e.g.,
huge search spaces) that call into question their feasibility.

 2 Position

The hypothesis of this paper is that a new architecture for generators is required to overcome this
problem in a practical way. The essential feature of this new architecture is the ability to attach
tags to any element of the Abstract Syntax Tree (AST) that represents a DSL expression and use
those tags to optimize the generated code. The tags can be thought of as mostly a distributed
optimization plan, but they also include translation status information (e.g., inferred types). The
generator both manipulates the tags (i.e., reasons about the tags, the domain information, and the
program constructs) and eventually executes them by calling the optimizing transformations
associated with them (e.g., the PROMOTECONDITIONABOVELOOP transformation, which
tries to move a condition test outside of a loop). Through this tag driven optimization process
delocalized code gets relocalized and redundant code gets shared. Some tags depend on
optimization events (e.g., substitution of a tagged expression) for their triggering condition,
which may, in turn, trigger a whole cascade of other opportunistic transformations.

3 Approach

3.1 Example

An example of a domain specific programming expression is illustrated by expression for Sobel
edge detection in bitmapped images.

Dsdeclare image a, b form (array m n) of bwpixel;

b = [(a ⊕⊕ s)2 + (a ⊕⊕ sp)2]1/2 ;

where a and b are (m X n) grayscale images and ⊕ is a convolution operator that applies the
template matrices s and sp to each pixel a[i,j] and its surrounding neighborhood in the image a to
compute the corresponding pixel b[i,j] of b. s and sp are OO classes that define the specifics of the
pixel neighborhoods (i.e., the neighborhood sizes and shapes, the weights to be associated with
each position in the neighborhood, and any special processing such as the special case when s or
sp are hanging off the edge of the image). The convolution operator iterates over the image a
performing a sum or products of a[i,j] and all of its neighboring pixels. The neighborhoods are
defined by s and sp. For this example, they are defined as

s [(-1:1), (-1:1)] = {{-1, 0, 1}, {-2, 0 , 2}, {-1, 0, 1}} and

sp [(-1:1), (-1:1)] = {{-1, -2, -1}, {0, 0, 0}, {-1, -2, -1}}.

For a single CPU Pentium machine without MMX instructions (which are SIMD instructions
that perform some arithmetic in parallel), the AO generator will produce code that looks like
for (i=0; i < m; i++) /* Version 1 */
 {im1=i-1; ip1= i+1;
 for (j=0; j < n; j++)
 { if(i==0 || j==0 || i==m-1 || j==n-1) /*Off edge*/
 then b[i, j] = 0;
 else { jm1= j-1; jp1 = j+1;
 t1 = a[im1, jm1] * (-1) + a[im1, j] * (-2) +
 a[im1, jp1] * (-1) + a[ip1, jm1] *1 +
 a[ip1, j] * 2 + a[ip1, jp1] * 1;
 t2 = a[im1, jm1] * (-1) + a[i, jm1] * (-2) +
 a[ip1, jm1] * (-1) + a[im1, jp1] *1 +
 a[i, jp1] * 2 + a[ip1, jp1] * 1;

 b[i, j] = sqrt(t1*t1 + t2*t2)}}}

This result requires 62 large grain transformations and is produced in a few tens of seconds on a
400 MHz Pentium. I believe that most of this time is due to the experimental nature of the
implementation. By redesigning the implementation data structures, some search algorithms that
are exponential in the height of the expression tree will become constant time operations (i.e., a
single pointer dereference) and I expect that this will drop the generation times near the range of
optimizing compiler times. In any case, the AO generator can write the code a good deal faster
than I can.

In contrast, if the machine architecture is specified to be MMX, the resultant code is entirely
different from version 1:
{int s[(-1:1), (-1:1)]={{-1, 0, 1}, {-2, 0 , 2}, {-1, 0, 1}};/* Version 2 */
int sp [(-1:1), (-1:1)]={{-1, -2, -1}, {0, 0, 0}, {-1, -2, -1}};
for (j=0; j < n; j++) b[0,j] = 0 ;
for (i=0; i < m; i++) b[i,0] = 0 ;
for (j=0; j < n; j++) b[(m-1),j] = 0 ;
for (i=0; i < m; i++) b[i,(n-1)] = 0 ;
{ for (i=0; i < m; i++)
 { for (j=0; j < n; j++)
 {t1 = UNPACKADD(PADD2 (PADD2 (PMADD3 (&(a[i-1, j-1]), &(s[-1,
-1])) ,
 PMADD3 (&(a[i, j-1]), &(s[0,
-1]))),
 PMADD3 (&(a[i+1,j-1]), &(s[1, -1])));
 t2 = UNPACKADD(PADD2 (PMADD3 (&(a[i-1, j-1]), &(sp [-1, -1]))
, PMADD3 (&(a[i+1, j-1]), &(sp [0, -1])))));
 b[i,j] = sqrt(t1*t1 + t2*t2);}}}

Where the functions UNPACKADD, PADD2 , and PMADD3 correspond to MMX instructions
and are defined as PMADD3 ((a0, a1, a2) , (c0, c1, c2)) = (a0*c0+a1*c1, a2*c2 +0*0), PADD2
((x0, x1) , (x2, x3)) = (x0+x2, x1+x3), PMADD3 ((a0, a1, a2) , (c0, c1, c2)) = (a0*c0+a1*c1,
a2*c2 +0*0), and UNPACKADD((x0, x1)) = (x0+x1). All lend themselves to direct translation
into MMX instruction sequences. s and sp have become pure data arrays to optimize the use of
the MMX instructions. Notice, that the special case test (i.e., is the template hanging over the
edge of the image?) has completely disappeared. Transformations that perform simple inferences
have split the main loop on that test turning the single loop in the previous version into five
loops. Four loops plug zeros into the four edges of the image (i.e., the new form of the special
case processing) and one loop processes the inside of the image (i.e., the non-special case
processing). The fundamental difference in the derivation of the two versions is in the tag driven
optimization phase. Up to that stage, the transformations that fire are exactly the same. The form
of the target program in the two cases just before tag driven optimization is exactly the same
except for the tags.

3.2 Operation

How does the AO generator accomplish this? The generator is a multi-phase, transformation
system. The early phases use pattern directed transformations (i.e., transformations that trigger
based on code patterns) to translate the high level operands into lower level conventional
programming constructs. For example, these transformations will refine images into pixels,
pixels into channels, and channels into integers. In the course of this, they also create, place, and

fuse the implied looping constructs. These transformations may also perform opportunistic
optimizations. For example, in the convolution example above, a pattern directed transformation
recognized that the expressions (a ⊕⊕ s)2 and (a ⊕⊕ sp)2 allow a reduction in strength optimization
to (t1 * t1) and (t2 * t2) , if the temporary assignments t1 =(a ⊕⊕ s) and t2 =(a ⊕⊕ sp) are created
and moved out of line.

The later phases use tag directed transformations (i.e., transformations that trigger based on tags
attached to the program) to incorporate operator definitions (e.g., the convolution operator and
the methods of s and sp), reorganize the resulting forms, and simplify the resulting code. These
reorganizations may cause optimization events (e.g., substitution of a subtree) that further trigger
event-based transformations, i.e., tags with explicit triggering conditions. These may cascade to
completely reorganize the program. For example, substitution of the convolution operator
definitions in the earlier example starts a cascade of transformations. It moves the neighborhood
loop into the then and else legs of an if-then-else expression that computes the weights, moves
the multiplication of the a[i,j] pixel into the then and else legs (recursively), and triggers constant
folding that reduces the loop in the then leg to zero.

These tags may be pre-positioned on reusable library components (e.g., on the definition of the
convolution operator) in anticipation of potential optimizations. They are also added and deleted
by other transformations in the course of generation.

4 Comparison

This work bears the strongest relation to Neighbors work. The main differences are 1) the fact
that the AO pattern directed transformations are organized into an inheritance hierarchy which
guides the choice of which transformations to try, and 2) the use of the tag directed approach to
program optimization. Neighbors uses pattern directed transformations during his optimization
phases.

The work bears a strong relationship to Kiczales' Aspect Oriented programming at least in terms
of its objectives. The optimization machinery appears to be quite different in the two approaches.
Kiczales' optimization mechanism seems to be centralized and the optimization algorithm itself
does not appear to be manipulated by the transformations. In contrast, the AO generator's tags
are distributed over the program and they undergo many transformations as the generator reasons
about the domain, the program, and the optimization tags. The tags come and go during the
execution of both types of transformations although the pattern directed transformations
manipulate them more frequently and purposefully than the tag directed transformations do.

The work is largely orthogonal and complementary to the work of Batory. However, both make
strong use of domain specific components and information in the course of their operation.

The AO generator and Doug Smith's work are similar in that they make heavy use of domain
specific information in the course of generating code. They differ in the machinery used. Smith's
relies much more heavily on inference machinery than does AO. The reasoning that AO does is
narrowly purposeful and is a somewhat rare event (e.g., the transformation that splits the loop in
the MMX example above does highly specialized reasoning about the loop limits). However,
partial evaluation (a form of inference) is used quite heavily in the AO generator, which is how
three level if-then-else statements get reduced to expressions like "a[im1, j] * (-2)".

References

[Batory93] Batory, Don, Singhal, Vivek, Sirkin, Marty, and Thomas, Jeff, "Scalable
Software Libraries," Symposium on the Foundations of Software Engineering. Los Angeles,
CA, December, 1993.

[Biggerstaff98a] Biggerstaff, Ted J., "Anticipatory Optimization in Domain Specific
Translation," International Conference on Software Reuse, Victoria, B. C., Canada, June
1998, pp. 124-133.

[Biggerstaff98b] Biggerstaff, Ted J., "Composite Folding in Anticipatory Optimization,"
Microsoft Research Technical Report MSR-TR-98-22, June 1998, pp. 10.

[Kiczales97] Kiczales, Gregor, Lamping, John, Mendhekar, Anurag, Maede, Chris, Lopes,
Cristina, Loingtier, Jean-Marc and Irwin, John "Aspect Oriented Programming," Tech.
Report SPL97-08 P9710042, Xerox PARC, 1997.

[Neighbors89] Neighbors, James M., "Draco: A Method for Engineering Reusable Software
Systems." In Ted J. Biggerstaff and Alan Perlis (Eds.), Software Reusability, Addison-
Wesley/ACM Press, 1989, pp. 295-319.

[Smith91] Smith, Douglas R., "KIDS-A Knowledge-Based Software Development System,"
in Automating Software Design, M. Lowry & R. McCartney, Eds., AAAI/MIT Press, 1991,
pp.483-514.

Biography

Ted Biggerstaff (tedb@microsoft.com) One Redmond Way, Redmond, WA. 98052, http:
//research.microsoft.com/~tedb/index.html /

Dr. Biggerstaff got his Ph.D. from University of Washington and has been largely without adult
supervision since then. He has done research on program generation in the early years and later
on development tools. He was a Director at MCC where he led a group doing reuse, program
understanding, and hypertext research. At Microsoft his roles have been at various times
program manager, research ambassador, and most recently, a researcher on program generation.
He has spent a good deal of time lately playing his favorite video game -- The Common LISP
development system.

He has written two books and many papers. He is a frequent keynote speaker, invited speaker, or
conference panelist.

