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Abstract—DSLGenTM (Domain Specific Language Generator) 

is a program generation system in which application programs 

can be written in a domain specific language that is 

independent of the execution platform architecture and yet can 

be targeted to arbitrary existing and future execution 

platforms in a way that exploits the performance or 

computation improvement opportunities specific to those 

platforms. This allows switching from one execution platform 

to another without reprogramming the applications. The 

generation of target programs is fully automatic and requires 

no user input or action beyond the specification of the 

computation and the separate specification of the desired 

features of the target execution platform. 
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I.  INTRODUCTION 

DSLGen
TM

 (patents issued [8] [9] [10] and patent 
pending) is a transformation-based program generation 
system that fully automatically generates a target 
implementation optimized for a variety of target execution 
architectures from two independent specifications: 1) a 
domain specific, Implementation Neutral Specification (INS) 
of the desired computation and 2) a domain specific 
EXecution Platform Specification (EXPS) that describes 
what optimization features of the execution platform should 
be exploited. The INS is invariant over all target execution 
platform architectures. That is, an application programmer 
can make no predictions about the architecture of the target 
implementation by looking at the INS alone. Thus, no 
reprogramming of the INS is required to switch from one 
platform to another. Only the EXPS features need to be 
changed to switch from one architecture (e.g., multicore) to 
another (e.g., vector machines). Importantly, DSLGen

TM
 

fully automatically converts an INS and an EXPS into target 
implementation code that takes advantage of a broad range 
of opportunities for high capability computations including 
large grain parallelism (e.g., multicore CPUs), small grain 
parallelism (e.g., instruction level parallelism or ILP), design 
pattern frameworks and so forth. It is theoretically possible 
to extend DSLGen

TM
’s  capabilities to other target execution 

platforms such as GPUs, Digital Signal Processors (DSPs), 
specialized processors, Field Programmable Gate Arrays 
(FPGAs), and API interfaces to layered implementations or 
libraries. The author believes that DSLGen

TM
 can be 

extended with new transform sets that will produce output 

optimized for virtually any arbitrary existing or future 
architecture. How can DSLGen

TM
 automatically produce 

programs that are tailored to such highly varied execution 
architectures? 

The short answer is that DSLGen
TM

 is an extensible 
generator that is designed to create a program design from 
scratch based on the INS plus generalized constraints and 
design features specified in the EXPS. In some sense, it is 
doing what a human programmer does. DSLGen

TM
 

automatically builds a Logical Architecture (LA) that 
constrains some problem domain oriented features of the 
target program design but defers building a Physical 
Architecture (PA) that commits to programming language 
and implementation platform oriented features (e.g., routine 
architectures, parametric connections, communication 
patterns and synchronization patterns).  That is, DSLGen

TM
 

architects, designs, constrains, reorganizes and optimizes the 
target program in the problem and programming  process 
domains rather than in the programming language (PL) 
domain and only after the macroscopic structure of the 
program is settled does it generate PL level code. In short, it 
designs the solution first and codes it second. 

Part of the secret to this process is that DSLGen
TM

 
eschews PL based representations during the design and 
architecture portion of the process thereby freeing it from the 
highly restrictive constraints of PLs. PLs are solution 
oriented not problem oriented. They require the programmer 
to tell how to perform a computation whereas during these 
early phases, the programmer knows what needs to be done 
and what design features the solution will have (i.e., the 
computational goals) but has not yet fully determined how to 
implement and integrate the computational needs and 
solution features.  

II. THE PROBLEM 

A key problem in exploiting the capabilities of various 
existing and future execution platform architectures for a 
specific target computation is the conflict between the goal 
of precisely describing the implementation of a target 
computation and the goal of casting the implementation into 
a diversity of forms each of which exploits a different set of 
high capability features of some specific execution platform 
architecture (e.g., parallel processing via multicore based 
threads). The key culprit in this conflict is the representation 
system used in the course of specifying the function of a 
target program – that is, the use of programming language 
based abstractions to represent the evolving program at each 
stage of its development and evolution. Einstein said “We 
see what our languages allow us to see.” And when a 
computer scientist understands his or her world in terms of 
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programming languages, it is natural to construct 
intermediate design and precursor representations of 
programs in terms of programming language (PL) based 
abstractions. This has led to the conventional, reductionist or 
layered models of program designs.  

These models may range from relatively concrete models 
built from minimally abstracted PL structures (e.g., abstract 
data types and object oriented models) to quite abstract 
models (e.g., Model Driven Engineering models [23]) that 
attempt to defer a greater number of concrete commitments 
in an effort to allow a greater diversity of eventual concrete 
program manifestations. The layers within the models may 
represent a variety of features or structures that eventually 
will be projected fairly faithfully into the structures of the 
final program (e.g., class diagrams). The layers also may 
represent specifications of behaviors (e.g., state diagrams) 
that will affect the final structure of the program in less direct 
ways but nevertheless are still partially expressed in terms of, 
and therefore imply, some structural elements of the final 
target program. The author believes that such PL based 
models have been a key impediment to mapping an 
implementation neutral specification of a computation to an 
arbitrary platform while still exploiting whatever high 
capability features that platform possesses. The problem, in 
summary, with PL based representations (regardless of their 
level of abstraction) is that the layers within the overall 
model of a computation have unintended and hidden 
interdependencies that arise because of the PL based 
abstractions. These often force implementation driven design 
goals (e.g., exploit multicore parallelism) to propagate 
complex, interrelated revisions and restructurings globally 
across many or all of the layers of the model. Why does this 
occur? 

Typically in such a layered model, the structure and some 
details of a layer of the target program are specified along 
with some abstract representation of the constituent elements 
(i.e., lower level layers) of that layer. In human based 
application of layered design, the abstract elements of the 
lower level layers are often expressed in terms of a semi-
formal pseudo-code or structural specification. In the 
automated versions of layered design, the informal 
specification is often replaced by somewhat more formal 
expressions (i.e., UML specifications [31]) of the interfaces 
to the lower level layers. For example, these might be simple 
routine calls, object oriented invocations, sub-types, sub-
classes or skeletal forms of elements that remain to be 
defined. Alternatively, these interfaces may be calls to or 
invocations of concretely defined API layers or interfaces to 
message based protocols (e.g., finite state machine 
specifications). In any case, the structure is typically fixed at 
a high level before the implications of that structure become 
manifest in a lower level later in the development process. 
Refinements within the lower layers often require changing 
or revising the structure at a higher level, which can be 
problematic. Further, in an automated system, distinct 
programming design goals will be, by necessity, handled at 
different times. This is further complicated by the fact that 
multiple design goals may be inconsistent (at some level of 
detail) or at least, they may be difficult to harmonize. 

A good example of this kind of difficulty is trying to 
design a program to exploit thread based parallel 
implementation. The exact structure and details of the final 
program are subtly affected by a myriad of possible problem 
features and programming goals. A threaded implementation 
will require some thread synchronization logic which may be 
spread across a number of yet to be defined routines. The 
computation will have to be partitioned into parts that are 
largely determined by the specifics of the target computation. 
These partitions will be mapped into routines and threads 
(e.g., some lightweight computations batched in one thread 
and other heavyweight computations decomposed into slices 
with their own threads). The thread protocol will introduce 
low level implementation details that potentially will have to 
be harmonized across a number of routines. The parameter 
choices for these routines (i.e., the plumbing) may be 
involved in the communication design for these thread 
routines and will be constrained by low level implementation 
details of the thread protocol. In DSLGen

TM
, such 

programming language level routine structures, routine inter-
communication decisions, thread protocol restrictions and 
thread library implementation requirements are added into 
the architecture close to the end of the design process after 
simplified logical architectures (LAs) of the elements of the 
domain specific computation specification (e.g., the INS) 
have been sketched out in broad general terms, terms that 
elide and defer much of the PL level detail. For example, the 
early LA design for thread based designs, vector machine 
designs, GPUs or others are indistinguishable from one 
another. Furthermore, the division of the computation into 
functions or routines and the parametric interconnection of 
those routines has yet to be decided when the LA is first 
sketched out. 

If an automated generator tries to handle all of these 
various design issues at once, there is an overwhelming 
explosion of cases to deal with and the approach quickly 
becomes infeasible. 

III. THE SOLUTION 

The ideal solution would be to recognize design goals 
and assert the programming objectives (e.g., thread based 
parallelism) provisionally without committing fully and 
early-on to constructing the PL structures and details. Why? 
Because those PL structures and details are likely to change 
and evolve as the target program is refined toward a final 
implementation. That potential change and evolution is 
difficult in the PL domain because of the subtle 
interdependencies among the PL structures and details. For 
example, data flow dependencies in the context of scopes 
and routines make code movement and revision quite 
complex. The ideal solution would allow each atomic design 
objective or intended design feature to be introduced one at a 
time. These design objectives and intended design features 
would imply and constrain the eventual code but not 
immediately construct it. It is far easier to back out of or alter 
design objectives and intended design features than it is to 
alter the eventual code forms that express those design 
objectives and intended features. In the ideal solution, 
previously asserted provisional commitments could be 



Copyright Software Generators, LLC, 2013 

altered before they are cast into concrete code. And this idea 
is the essence of DSLGen

TM
.  

DSLGen
TM

 allows the construction of a logical 
architecture (LA) that levies minimal constraints on the 
evolving program and explicitly defers generating 
programming language structures (either concrete or 
abstract) early on. That is, initially the LA will constrain only 
the decomposition of a computation into its major (and 
natural) organizational divisions (which are called natural 
partitions) omitting any PL details of the programming 
routine structure or PL details of those major organizational 
divisions. There is no information on control structure, 
routines, functions, threads, parametric connections, data 
flow connections, machine units, instruction styles, parallel 
synchronization structures and so forth. All of that is 
deferred and added in step by step as the generation process 
proceeds. In fact, the LA will be revised and evolved step by 
step via the encapsulation of individual design features, each 
of which will further constrain the final expression of the 
target program.  

A. Associative Programming Constraints and the LA 

DSLGen
TM

 builds the LA out of a new kind of 
representation element – an Associative Programming 
Constraint (APC). APCs are partial and provisional 
constraints on the target computation. They do not fully 
determine the target implementation. The motivation for 
APC’s is analogous to the motivation for modifiers in natural 
language. That is, an APC is a modifier of a domain specific 
expression (e.g., a convolution expression) and it implies 
some distinct (possibly global) design feature in the eventual 
programming language (PL) implementation form of that 
domain specific expression. For example, the APC might 
provide the “nominal” form of the loop or loops required to 
perform the computation. However, this is only a partial 
specification of the PL implementation form because it does 
not determine the context or even the concrete 
implementation form of the loops. There are many open 
questions unanswered by a singular APC. For example: Are 
the implementation loop or loops partitioned into pieces? 
And are those loop pieces organized into thread routines or 
re-expressed as Intel’s SSE vector instructions (e.g., 
PMADD instructions)? If SSE instructions, what triggers the 
reorganization necessary to reform the weight values into 
vectors?  And so forth. Thus, a singular APC is unlikely to 
be sufficient to generate the desired implementation for the 
target implementation. It is unlikely that code written 
directly from a singular APC will be the same as the eventual 
code of the generated target implementation. Too many other 
design features (represented by other APCs) will be needed 
to fulfill the requirements imposed by the user’s description 
of the execution platform features to be exploited in the 
target routine. It is much more likely that a number of APCs 
will be required to fully specify the PL implementation. 
Furthermore, there is seldom a one to one mapping between 
an APC and a programming language abstraction in the 
target implementation. More generally, the mapping is many 
to many. Moreover, like modification structures in natural 
language, these APCs will need to be formulated into a 

structure (i.e., the logical architecture) that captures the 
interrelationships among them. For example, a partitioning 
APC may modify a loop APC and therefore imply addition 
features of the PL loop implementation. 

APCs come in two major varieties: Iteration constraints 
and partition constraints. For example, a loop constraint (a 
subclass of iteration constraint) might specify “i” and “j” to 
be provisional indexes of a matrix “a”. They might have 
ranges of [0,(m-1)] and [0,(n-1)], respectively. And related to 
this loop constraint, for example, might be a partition 
constraint (e.g., Edge1) that modifies the loop and specifies 
the subdivision of that loop in which (i==0). In other words, 
the Edge1 partitioning constraint implies that the loop over i 
is degenerate and will refine to the operation that is just the 
body of the loop. Nothing further about the implementation 
is determined by these constraints. 

Conventionally, one tends to think of “constraints” as 
being represented by some kind of formulaic expression 
(e.g., a predicate calculus expression). However, while 
formulaic expressions do play a role in some APCs (e.g., 
partition APCs will have a so-called “partitioning condition” 
expression), APCs also have several additional 
representational facets and features. Operationally, they are 
CommonLisp Object System (CLOS) objects that are 
associated with elements of the INS and initially arise via 
translation of the INS. They imply something about the 
eventual PL implementation of that INS expression by their 
existence and interrelationships. But beyond that, because 
they are problem domain entities and not programming 
language abstractions, they also may have problem domain 
knowledge features or properties that are useful to the 
generator. For example, image “edges” have the domain 
property of being “lightweight” computations and that 
property may be employed by the generator to decide upon 
the details of thread designs. Later in this paper, we will see 
that the edge loops in a thread design are batched into a 
single thread rather than each having their own thread. The 
“lightweight” domain property is used heuristically by the 
generator to make that design decision. Similarly, image 
center partitions are known to be “heavyweight” 
computations because there are often many individual 
computations to be performed and because the individual 
computations are often fairly complex. That domain property 
will be used by the generator to decide to slice the center 
partition into computational slices and to assign each to its 
own parallel thread. 

The constraining affects of APCs will likely need to be 
altered and refined as the generation process proceeds and 
this will be effected by altering and specializing the 
definitions of the constraints. For example, an edge partition 
that modifies (i.e., is associated with) a loop, is likely to 
cause component definitions specific to that edge to be 
specialized thereby altering the loop’s beginning index value, 
ending value and increment. Those specializations may lead 
to loops completely evaporating, which will happen in the 
forthcoming example. Furthermore, some specialized 
definitions (e.g., the definition of the weight coefficient for a 
neighborhood specialized to an edge) may cause 
simplification of a loop’s body, which might compute the 
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value of a single edge pixel. In the forthcoming example, the 
code to compute an edge pixel will simplify to 0. Such 
simplification is effected via DSLGen™‘s built-in partial 
evaluation system (see also [21]). 

B. Creating and Evolving the Logical Architecture 

 
Loop APCs are created and propagated over the INS 

structure (somewhat analogously to APL’s method of loop 
introduction and placement). In the course of that process, 
the creation of a loop APC may trigger the creation of 
partition APCs by a process we will describe in a moment. 
APCs are combined in several ways. For example, the 
operational effect of combining equivalent APC sets, is to 
merge equivalent iterations (e.g., two loop APCs) or to adapt 
two slightly different computational cases to a single 
interation scheme (e.g., the computations introduced by two 
separate domain specific operators such as convolution 
operators). APCs can be split in two, reorganized into groups 
that imply future design features and revised to incorporate 
one or more elective design features (e.g., multicore, 
threaded design). Furthermore, partition sets of logically 
orthogonal APCs can be combined by a cross product 
operation to produce a new set of partitions. Not until later in 
the generation process are the APCs actually applied by 
replicating and cloning the INS into multiple distinct forms 
specialized for different partitions of the implementation. 
These specialized INS clones are the precursors to the actual 
PL expression of the target implementation. 

Specialized versions of APCs may be created by 
subclassing, thereby allowing other kinds of architectural 
factorings. For example, an image center partition may be 
specialized to a slice of an image center in anticipation of 
computing slices of the image center in parallel threads.  

To provide a concrete context in which to discuss the LA 
and its representational elements, we will introduce a 
problem domain, a domain specific language for that 
problem domain and a concrete example. 

IV. THE PROBLEM DOMAIN AND AN EXAMPLE PROBLEM 

The initial problem domain treated by DSLGen
TM

 is 
digital signal processing (DSP) and includes problems that 
range from signal and image processing to neural networks 
to pattern recognition plus a rich set of related problems. The 
domain specific language used to express the INS is based 
on the Image Algebra (IA) [28].   

As an example computation, we develop a program that 
performs Sobel edge detection on a grayscale image (i.e., 
where the pixels are shades of gray). Such a program would 
take, for example, the image “a” in Fig. 1 as input and 
produce the image “b” in Fig.2 as output. The output image 
has been processed so as to enhance (line) edges of items in 
the image by the Sobel edge detection method. 

Each black and white pixel b[i,j] in the output image “b” 
is computed from an expression involving the sum of 
products of pixels in a neighborhood (e.g., sp, of type 
iatemplate) surrounding the a[i,j] pixel and the coefficients 
defined by that neighborhood (e.g., sp). This is called a 
convolution of a matrix with a template (or neighborhood). 

In the IA, a convolution is designated by the ⊕ operator, e.g., 

(a ⊕ sp). In the following examples, s and sp will designate 
instances of the class iatemplate. Mathematically, the Sobel 
computation is defined as 

 
{Foralli,j (bi,j : bi,j =  sqrt((∑p, q (w(s)p , q * a i+p , j+q)

2
 + 

                   ∑p, q (w(sp)p , q * a i+p , j+q)
2
)}   (1) 

 
where i and j are indexes that range over the matrices a and 
b; p and q are indexes that range over the iatemplate 
neighborhoods s and sp;  and the coefficients of the 
neighborhood (which are also called weights)  are defined by 
the function “w”. For Sobel edge detection, the weights are 
all defined to be 0 if the center pixel of the neighborhood 
corresponds to an edge pixel in the image (i.e., w(s) = 0 and 
w(sp) = 0), and if not an edge pixel, they are defined by the s 
and sp neighborhood weights shown in (2).  It is convenient 
to index the neighborhoods in the DSL from -1 to +1 for 
both dimensions so that the current pixel being processed is 
at   (0, 0) of the neighborhood. 
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Since an implementation of this computation for a 

parallel computer may not be organized like the 
mathematical formula, it is useful to represent this 
specification more abstractly because such abstractions can 
defer the implementation and organization decisions and 
thereby allow the computation (i.e., what is to be computed) 
to be specified completely separately and somewhat 
independently from the implementation form (i.e., how it is 
to be computed). Thus, the abstract computation 
specification is independent of the architecture of the 
machine that will eventually be chosen to run the code. 
Choosing a different machine architecture for the 
implementation form without making any changes to the 
specification of the computation (i.e., the what), will 
automatically generate a different implementation form that 
is tailored to the new machine’s architecture. More to the 
point, porting from one kind of machine architecture (e.g., 
machines with instruction level parallelism like Intel’s SSE 
instructions) to a different kind of machine architecture (e.g., 
machines with large grain parallelism such as multi-core 
CPUs) can be done automatically by only making trivial 
changes to the machine specifications and no changes to the 
computation specification (i.e., the what). The publication 
form in [28] for the Sobel Edge detection mathematical 
formula (1) is based on the Image Algebra domain specific 
language (DSL). Re-expressing the formula (1) in the Image 
Algebra gives a first cut at the INS for the Sobel example: 
 

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
                                   (3a) 

 
   Of course, the INS will need some declarations for a, b, 

s, sp, etc.: 
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(DSDeclare IATemplate s :form (array (-1 1) (-1 1))  

:of DSNumber) 
(DSDeclare IATemplate sp :form (array (-1 1) (-1 1))  

:of DSNumber) 
(DSDeclare DSNumber m :facts ((> m 1))) 
(DSDeclare DSNumber n :facts ((> n 1))) 
(DSDeclare BWImage a :form (array m n) :of BWPixel) 
(DSDeclare BWImage b :form (array m n) :of BWPixel)  

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
                                            (3b) 

 
m and n are assumed to be user defined. The DSL type 

declarations (e.g., IATemplate, BWImage, etc.) define 
CLOS types that will eventually refine to C types. The 
“:facts” keyword denotes a conjunction (i.e., list) of facts 
pertinent to the declared item (e.g., m) and will be used to 
infer, for example, that“(i==(m-1))” is false when “(i==0)” is 
true. Beyond (3b), we will also need some definitions for w 

of s and sp equivalent to (2) as well as for ⊕. These will be 
defined later. 

This DSL is the basis of the Implementation Neutral 
Specification (INS) in the examples used throughout the 
remainder of this document. A full description of the IA used 
by DSLGen

TM
 is beyond the scope of this paper (see [28]) 

but a few comments are in order. The IA is much like APL 
in the sense that IA specifications eschew the use of explicit 
looping constructs allowing loops to be implied by IA 
operators and data structures. The generator will introduce 
implied loops as constraints and, through the manipulation, 
combination and propagation of these constraints, will 
determine the relationships between IA expressions and 
loops. The initial form of the LA arises during this process. 

 

 
 
 
 
In DSLGen

TM
, the Image Algebra is adapted to a more 

utilitarian, LISP based syntax with prefix operators, without 

the pretty symbols (e.g., the convolution operator ⊕ becomes 
a Lisp symbol), and with the w functions in (1) becoming so-
called Method-Transforms (MT), which rewrite Abstract 
Syntax Tree (AST) subtrees. MTs look superficially a bit like 
object oriented methods with a pattern (i.e., the MT’s left 
hand side or lhs) as the analog of a method’s parameter 

sequence and a pure functional expression right hand side 
(rhs) as the analog of a method’s body. MTs will be an 
important component of the intermediate language (IL) by 
which provisional but malleable low level definitions are 
expressed. For example, w of the neighborhood sp is an MT 
expressed as: 

 
(Defcomponent w (sp  #. ArrayReference ?p ?q) 
   (if (or (== ?i  ?ilow) (== ?j  ?jlow)  
             (== ?i ?ihigh) (== ?j ?jhigh)  
       (tags (constraints partitionmatrixtest edge))) 
        (then 0)                                         
        (else (if (and (!= ?p 0) (!= ?q 0))   
                     (then ?q) 
                     (else (if (and (== ?p 0) (!= ?q 0))  
                                  (then (* 2 ?q)) 
                                  (else 0)))))))                     (4) 
 

where ArrayReference is the name of a shared pattern that 
together with the generator variables ?p and ?q will gather 
elements of the generator’s context of the convolution 
operation involving the neighborhood sp. Part of this context 
will come from a pixel array reference in an AST (e.g., a[i,j]) 
that will result in the binding of the loop index variables 
(e.g., i and j) to the pattern variables ?i and ?j, the image 
matrix name a to ?a and the expressions defining the upper 
and lower ranges of those loop indexes to ?ihigh, ?ilow, etc. 
The remainder of the lhs pattern after ArrayReference will 
bind ?p and ?q to the loop index names used by the inner 
convolution loops over the neighborhood designated by sp. 
This generator context is the mechanism by which the 
generator preserves the connection between elements of the 
problem domain specification (e.g., a convolution 
expression) and the constituent elements of the evolving 
programming language domain implementation (e.g., the 
details of the image and neighborhood loops that will 
eventually implement that problem domain expression). 
Thus, the problem domain knowledge is used as a meta-
knowledge context to relate high level goals (e.g., build a 
convolution computation) to the low level programming 
elements (e.g., loop building blocks for the image and 
neighborhood loops) out of which the implementation code 
will be built to achieve that high level goal.   

The “tags” expression designates a property list for the 
OR conditional expression, which in (4) provides the user 
supplied domain knowledge that the OR expression is a 
partitioning condition for this computation that will identify 
edge partitions and by implication, a non-edge (i.e., center) 
partition. Problem domain concepts like “edge” and “center” 
play a key role in the logical architecture for the target 
computation and beyond that, in imposing design pattern 
frameworks onto a logical architecture. Heuristic rules based 
on domain concepts are the mechanisms whereby 
DSLGen

TM
 chooses a design pattern framework to introduce 

PL structures and clichés (e.g., coordinated routines, 
synchronization patterns and thread management clichés) 
and maps the LA into the structures and clichés of that 
design pattern framework.  

Figure 1. Input Image a 
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The opportunity for such domain specific heuristic rules 
is open ended, especially given the rich variety of possible 
semantic subclasses of partitions. Different problem 
examples may introduce other domain semantics. For 
example, in the matrix domain, the semantic subclasses 
include corners (e.g., corners are special cases in partitioning 
image averaging computations); non-corner edges also used 
in image averaging; upper and lower triangular matrices, 
which are used in various matrix algorithms; diagonal 
matrices; and so forth. By contrast, in the data structure 
domain, domain subclasses include trees, left and right 
subtrees, red and black nodes, etc. In general, problem 
domain concepts drive program generation. 

 

  
 
 
     

V. THE DESIGN REPRESENTATION SYSTEM AND ITS 

OPERATION 

The first iteration of the logical architecture for the Sobel 
example is shown conceptually in Figure 3. Loop constraints 
are CLOS objects that keep track of loop indexes, loop 
nesting and the logical description of the loop, which 
comprises logical assertions and precursors thereof that 
constrain or restrict the loop in some way. For example, the 
MT definition of Partestx of s is IL manufactured during 
initial INS translation process that transforms an INS 
expression on images into a partially translated INS 
expression on pixels. Partestx of s is a precursor logical 
assertion that will eventually refine to a concrete partitioning 
condition for some (not yet decided upon) partition. Partestx 
of s will eventually be refined to a concrete expression such 
as “(i==0)” in the context of a particular partition-based 
computation (e.g., Edge1). And the addition of “(i==0)” to 
the loop constraint will change the form of the C code that is 
eventually generated for that partition by causing the loop 
over “i” to evaporate and possibly allowing the body of the 
loop to be simplified. In the chosen example, the bodies of 
edge loops undergo significant simplification. 

Operationally, Partestx is a closure over one of the 
disjuncts (e.g., (== ?i  ?ilow)) in the OR expression in (4) 
and the translation context bindings (e.g., ((?i i) (?ilow 0)) at 
the time of Partestx formation. That translation time will be 

when an expression like “(a ⊕ s)” is being translated and a 
provisional loop constraint is being introduced and 

propagated to the “⊕” level expression.  
As loop constraints are introduced, propagated and 

combined (e.g., providing loop sharing for separate 
computations), DSLGen

TM
 provides machinery for recording 

design decisions (e.g., discarding unneeded loop indexes) via 
dynamically generated transformations that will be applied 
periodically to synchronize the overall design. That is to say, 
several provisional loop constraints with provisional index 
names will be introduced as the generator walks over the 
expression tree. Only later, as these individual loop 
constraints propagate up the tree, does the generator discover 
that they can be combined thereby allowing one loop to 
replace two separate loops and thus, optimizing the 
computation. However, residual occurrences of no longer 
valid loop index names still exist in the contexts where they 
were introduced. To allow this to be fixed up, the generator 
dynamically creates transformations that incorporate the 
design decisions (e.g., discard loop index name i1 and 
replace it with i2). Later, the generator walks over the 
expression tree applying these fix up transformations and 
thereby synchronizes the overall expression.   

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

The loop constraint in Fig. 3 is associated (via the “fat” 
double headed arrow) with a partially translated INS 
expression. Operationally, this association is effected by the 
loop constraint appearing on the INS’s tags list as a property 
of the INS. Generally speaking, the loop constraint may be 
associated with a set of partitioning constraints such as the 
Edge1, Edge2, Edge3, Edge4 and Center5 (i.e., the CLOS 
objects) of this example. They indicate a partial and 
provisional decomposition of the loop, where each 
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decomposition body eventually will be formed from a cloned 
and specialized version of the associated INS expression. But 
DSLGen

TM
 does not perform the decomposition yet, because 

as the implementation design evolves, the partitioning is 
almost certain to change before it is cast into code. The 
partitioning implied by the set of partition objects is sort of a 
“to do” list and a “to do” list that will likely change before it 
is turned into code. However, this future cloning and 
specialization will be accomplished by using a set of newly 
formed specializations of s, sp and their IL. For example, the 
specialization of a specific neighborhood (e.g., sp) and its IL 
(e.g., w) for a specific partition constraint (e.g., edge1) is 
formed by assuming a truth value for the partitioning 
condition of the partition constraint and partially evaluating 
the IL definitions under that assumption.  For example, for 
Edge1, the MT definition of w of sp, in (4), would partially 
evaluate to the new MT definition, w of sp-edge1 show in 
expression (5): 

 
(Defcomponent w (sp-edge1 #.ArrayReference ?p ?q) 0)  (5) 
 

The LA is malleable so that DSLGen
TM

 can 
incrementally introduce design features by a process called 
Design Feature Encapsulation (DFE). DFE will revise IL 
definitions, extend and reorganize partition sets and 
occasionally even revise some of the DSLGen

TM
’s own 

transformations that define the overall generation and 
programming process (e.g., when introducing instruction 
level parallelism). 

To ground the LA concept a bit more in concrete reality, 

Fig. 3a shows what a domain engineer who is extending or 
debugging a domain model would see by using the 
Architecture Browser (AB) tool of DSLGen™. It shows a 
concrete example of an LA that is roughly analogous to the 
conceptual version of Fig. 3. The correspondences with the 
examples chosen for this article are not exact for reasons that 
are not relevant to this paper. However, the neighborhood 
names “SX” and “SPX” in Fig. 3a are obviously the analogs 
of the names of “s” and “sp” used in the earlier examples of 
this paper.  

In Fig. 3a, the left hand panel of the AB shows the 
architectural structure associated with (i.e., modifying) the 
loop constraint Loop2d5, which is of type “loop2d”, where 
Loop2d5 is the fifth loop2d instance that DSLGen™ has 
generated so far. The Loop2d5 constraint is modified by a 
partition set (partitionset3) that contains five partition APCs 
(i.e., edge11, edge12, edge13, edge14 and center15). For the 
edge11 partition, whose substructures have been opened for 
examination, there are two domain variables (i.e., the sx-0-
edge11 and spx-0-edge11 neighborhoods) that are 
specialized to the edge11 partition. The sx-0-edge11 
neighborhood variable has been opened to reveal the 
component definitions (i.e., method transforms) that have 
been specialized to it. These method transforms will 
eventually refine to concrete code within the target program 
context that is dealing with edge11. 

sx-0-edge11 and spx-0-edge11 correspond to our 
conceptual example’s specialized neighborhoods s-edge1 
and sp-edge1. The sx-0-edge11 and spx-0-edge11 
neighborhoods have been combined because they are both 

Figure 3a. Browsing the LA 
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specialized on the same partitioning condition. That is, the 
generic IL forms (Partestx sx-0-edge11) and (Partestx spx-0-
edge11) will both refine to the same concrete form (e.g., 
“(==  idx1  0)” ). 

The method transforms organized within these partition 
structures (e.g., “w.sx-0-edge11.formals”) represent the 
specialized components that will be used to generate code 
when they are eventually inlined (i.e., in a phase named 
“formals”). These components are specialize to their specific 
partitions via the process describe above and illustrated for 
an edge partition by formula (5). The triple dotted 
transformation names identify the CLOS object that defines 
the transformation. The triple dotted name parts comprise the 
method or transformation name (e.g., “w”), the CLOS object 
where the transformation object is stored (e.g., sx-0-edge11) 
and the generator phase name for which the transform is 
enabled (e.g., “formals” for MT’s). All transformations are 
enabled (i.e., will be tried and can possibly fire) only during 
their named phase. Thus, the overall DSLGen™ process is 
defined by a list of phase names (which are user definable 
and extensible) and a package of transformations for each 
phase. Phases define high level generation tasks like build 
scope structure, process declarations, do initial type 
inference, create logical architecture, build synthetic 
architecture, etc. 

The right hand panel of Fig. 3a shows the key fields of 
the selected partition constraint (i.e., the “center15” 
partition). Interestingly enough, it reveals that the center15 
partition was created by merging the center5 and center10 
partitions, which arose from the two different convolution 
expressions of  formula (3a). Since the partitioning condition 
of both will refine to the same concrete code (e.g., “(==  idx1  
0)” ), they can be combined. The operational result of that 
combination is that the two convolution computations can 
share a single loop thereby avoiding two passes over the 
image.  

The initial logical architecture illustrated in Figs. 3 and 
3a captures only those design features and structures that are 
inherent to the computation specified by the user. What 
remains to be determined are the elective design features that 
arise because of the user’s specification of the 
implementation architecture features that he or she wants to 
exploit in the final implementation. The next section will 
look at how the elective design features are created and 
incorporated in the LA by a process of Design Feature 
Encapsulation. 

A. Design Feature Encapsulation 

For our example, let us use an EXPS of “((PL C)  Mcore  
(Threads MS) (LoadLevel (SliceSize 5))).” This specifies: 1) 
C is the output language, 2) the target is a multicore machine 
that exploits threaded parallelism using Microsoft’s thread 
library and 3) the design should decompose the computation 
by slicing up some unspecified heavyweight computation 
using 5 unspecified units per slice. In the example, the LA 
specifics will be used to disambiguate what is being sliced up 
(e.g., Center5) and what kind of units comprise a slice (e.g., 
matrix rows). 

In figure 3, we have already seen a simple example of 
DFE where IL definitions are specialized to specific logical 
partitions of a target computation. These specializations will 
cause computations along the matrix edges to simplify to a 
single loop that assigns 0 to pixels of that edge. Another 
simple example of DFE is mapping from IA neighborhood 
style indexing to C style indexing. IA style indexing ranges 
from –n to +n for a (2n+1) by (2n+1) neighborhood so that 
the center pixel is at (0,0). In contrast, the C language (i.e., 
the chosen output language) arrays range from 0 to 2n. The 
indexing DFE is accomplished by algebraic manipulation of 
the right hand side (i.e., the MT body) of IL involving 
neighborhood loop indexes, which relocates instances of 
those loop indexes appropriately.  

However, one of the most powerful examples of DFE is 
the introduction of elective architectural design features that 
alter the form and relationships within the implementation 
across a broad set of coordinated routines, data structures and 
possibly even parallel processes. This is accomplished by the 
use of synthetic partitions, which extend the notion of natural 
partitions by adding elective design feature constraints that 
are implied by the EXPS. 

1) Introducing Synthetic Partitions 

In DSLGen
TM

, the generation process is divided into named 
phases, each of which has a narrowly defined generation 
purpose. The phase most relevant to the introduction of wide 
ranging elective design features is the Synthetic Design 
phase. During the Synthetic Design phase, the generator 
introduces design features (e.g., via synthetic partitions as 

 

 

Figure 4. Revised logical architecture of example 
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well as synthetic loop APCs) that will constrain the evolving 
LA to be much more specific to a design for some specific 
execution platform. These synthetic partitions imply 
implementation structures that exploit high capability 
features of the execution platform and that, when finally re-
expressed in a form closer to code,  may have a global and 
coordinated affect across much of the LA (e.g., via multiple 
routines that coordinate the use of multicore parallel 
computation). The Synthetic Design phase operates on the 
logical architecture to revise and reorganize loop APCs, to 
reorganize the partitions and probably (depending on the 
execution platform spec) to create synthetic partitions that 
are consistent with one or more design frameworks. These 
design frameworks introduce the implementation level 
details (e.g., thread and synchronization management as well 
as low level programming clichés) to be integrated into the 
evolving target program. How does the Synthetic Design 
phase affect the LA of Fig. 3?  

Our chosen example EXPS requires that the computation 
should be load leveled (i.e., sliced into smaller computational 
pieces) in anticipation of formulating the computation to run 
in parallel threads on a multicore platform. Given the EXPS 
requirements, Fig. 4 shows the revised logical architecture 
arising from the example EXPS. The synthetic partitions are 
denoted by dashed boxes. The load leveling requirement will 
engender two synthetic partitions (e.g., Center5-KSegs and 
Center5-ASeg) that respectively express the design feature 
that assumes the center partition (i.e., Center5) is 
decomposed into smaller pieces and the design feature that 
implies code that will process each of those smaller pieces.  

Simultaneously, in Fig. 4, the loop constraint from Fig. 3, 
is reformulated into two loop constraints (i.e., Slicer and 
ASlice) that will be required by the synthetic partitions 
Center5-KSegs and Center5-ASeg. This synthesis process 
also introduces versions of the neighborhoods S-Center5 and 
SP-Center5 specialized for Center5-Ksegs and Center5-Aseg 
and generates specialized the IL for each. The step size of the 
Slicer loop is inferred from information in the EXPS or from 
a default if the EXPS is silent on the subject. The step size is 
represented by the IL expression “Rstep(S-Center5-Ksegs)” 
in Fig. 4. For the example, we have chosen a step size of 5. 
Using this step size (with an inferred dimension of “rows”), 
the code engendered by Slicer will dynamically compute a 
new range for each instance of the ASlice loop. Thus, the 
Aslice loop in the first thread will have a range of 
[0,min(4,(m-1))], the second [5, min(9,(m-1))] , the third [10, 
min(14,(m-1))] and so forth. 

2) Cloning and Specialization 

At this point, DSLGen™ is ready to create explicit 
instances of the separate computation cases so that those 
cases can be moved to the correct places in the emerging 
global design architecture. This is accomplished by creating 
clones of the APCs that are specialized to the various 
partitions (i.e., cases). Fig. 5 illustrates the specialized clones 
that will be created from the synthetic logical architecture of 
Fig.4. These clones will supply the design features specific 
to the essence of the computation (e.g., specs for loops and 
for computational steps). They will be combined with a 

design framework that will supply the overall architecture 
and design features specific to the elective requirements of 
the computation implementation (e.g., patterns of 
cooperative routines, pattern of synchronization and even 
low level program code supporting both). More specifically, 
the clones will be used to fill in holes (i.e., undetermined 
parts) of the PL based design framework.  

A design framework is roughly a formalization of the 
“gang of four’s” notion of a design pattern [19]. It is 
basically a large scale skeletal code pattern (e.g., a pattern of 
coordinated routines) with holes that expect certain kinds of 
LA elements. For example, some holes will expect loop 
APCs associated with some version of the INS that is 
specialized for lightweight computations (e.g., image edge 
loops shown in Fig. 5 as callout 5-05 and their respective 
INS clones shown as callout 5-03). Others will expect a loop 
APC with a version of the INS specialized to heavyweight 
computations (e.g., a slice of an image center, which is 
shown as callout 5-10) and its corresponding loop APC (e.g., 
Aslice shown as callout 5-02). Yet others (for this specific 
example) may expect synthetic APCs that are tailored to 
elective design features such as a loop that slices up the data 
structure associated with the heavyweight computation (e.g., 
a loop like Slicer in Figs. 4 and 5, where Slicer is shown as 
callout 5-01). The process of combining the clones of Fig. 5 
with a design framework is described in some detail in the 
next section. 

3) Merging Design Patterns with a Logical Architecture 

At this point, DSLGen
TM

 is ready to add in the PL level 
details (e.g., a pattern of interrelated routines, parametric 
plumbing, thread management clichés and protocols of 
specific thread libraries) by mapping the LA into a PA 
through use of a design pattern framework. DSLGen

TM
 

allows for a library of design pattern based frameworks (i.e., 
objects with associated PL-like skeletons), each of which 
represents some reasonably small combination of related 
elective design features. Additionally, each such framework 
has a set of holes containing protocol expressions (indicated 
by embolden designators) that specify elements of the LA 
that should be substituted for the protocol expressions. The 
specific design framework chosen by DSLGen™ is 
determined by the LA’s combination of architectural features 
as well as problem domain properties of the target 
computation. For example, the convolution operations in the 
problem domain specification of our example (i.e., 
expression (3a) ) reveal that each output pixel computation is 
independent of other output pixel computations, which is a 
requirement of the chosen design framework. Such a 
property can be determined by examining only the types and 
structure of the domain specific expressions. If there had 
been some interdependencies among separate pixel 
computations, it would have changed both the course of the 
synthetic design process and the possible design 
framework(s) that could apply. In such a case, the whole 
structure of the design framework would have been different 
and in particular, the patterns of synchronization would have 
been different. 
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The holes in the design framework are designed to 
receive computational payloads from the LA (e.g., partition 
specific computations). For example, a particular framework 
might be designed to receive partitions such as image edges 
that are “probably” order n computations (i.e., lightweight 
computations) as well as to receive partitions such as image 
centers that are “probably” order n squared computations 
(i.e., heavyweight computations). Such a framework might 
introduce a set of cooperating PL routines and the parametric 
plumbing among those routines, where the plumbing may 
include some “holes” that will receive data items specific to 
the INS. There may be additional PL design features 
included, such as synchronization patterns for parallel 
computation and detailed thread control clichés. But the 
framework is agnostic about its payload. It says nothing 
about exactly what kind of a computation is occurring in its 
holes. That computational payload information will be 
supplied by the logical architecture. 

So, based on the example LA plus specific features 
required by the EXPS, DSLGen

TM
 will search its design 

pattern data base for a design pattern meeting these criteria. 
It finds one with the following skeletal PL framework: 

 
 
 
 
 
 
 
 

void  ?managethreads (  )  
   { HANDLE threadPtrs[200];  
      HANDLE handle; 
      /* Launch the thread for lightweight processes. */ 
      handle = (HANDLE)_beginthread( 
                      &?DoOrderNCases , 0, (void*) 0);  
      DuplicateHandle(GetCurrentProcess(), handle,  
               GetCurrentProcess(),&threadPtrs[0],  
       0, FALSE, DUPLICATE_SAME_ACCESS);  
     /* Launch the threads for the slices of heavyweight       
         processes. */ 
     {handle = (HANDLE)_beginthread(& ?DoASlice , 0,  
                           (int) (Idex ?SlicerConstraint)   )  ;  

           DuplicateHandle(GetCurrentProcess(), handle,  
                      GetCurrentProcess(),&threadPtrs[tc],  

        0, FALSE, DUPLICATE_SAME_ACCESS);  
        tc++;  }  (tags (constaints ?SlicerConstraint)) 
        long result = WaitForMultipleObjects(tc, threadPtrs,  
                                    true, INFINITE);  }                    (6) 
 
void ?DoASlice (int  (Idex ?SlicerConstraint))  
  {{ ?ins }  (tags (constraints ?ASliceConstraint)) 
     _endthread( );   }                                                   (7) 
 
 void ?DoOrderNCases   (  )  
 {?OrderNCases 
   _endthread( ); }                                                    (8) 
 
 

Figure 5.  Specialized Clones  
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Associated with the class of this design pattern is a 
CLOS method whose job is to find key elements in the LA 
and bind them to pattern variables (e.g., ?ins and  
?SlicerConstraint); invent and bind unique names for 
routines (e.g., “SobelCenter8” might be invented for 
?managethreads); clone and specialize the INS to specific 
partitions (e.g., by substituting sp-Edge1 for sp); and 
instantiate the skeletons with the bindings. Notice that the 
design skeletons are agnostic as to what their computational 
payload is going to be. Further, there are no PL like 
connections (e.g., calls to PL routines) between the design 
pattern skeletons and anything in the LA. The only 
requirements of the design pattern are that the LA has 
partitions that represent lightweight processes that can be 
batched in a single thread (e.g., edges) and a heavyweight 
process (e.g., a center) that is partitioned into a slicer 
partition and an implied set of slicee partitions. These 
requirements are determined by domain logic, that is, logical 
rules operating on problem domain information (e.g., 
properties of edges) rather than PL information. 

Space limitations preclude showing the full step by step 
expansion of all these skeletal routines but the thread routine 
that batches the edge partitions (?DoOrderNCases) is 
reasonably short and is interesting in that the edge loops will 
drastically simplify when in-lined and partially evaluated. 
Instantiating with cloning and specialization produces:  

 
 
void SobelEdges9( )  
  { /* Edge1 partitioning condition is  (i=0) */ 
    {for (int j=0; j<=(n-1);++j) 

 b [0,j]= [(a[0,j] ⊕ s-edge1[0,j]) 
2
 +  

                       (a[0,j] ⊕ sp-edge1[0,j]) 
2
] 

1/2
}  

     /* Edge2 partitioning condition is  (j=0) */ 
          {for (int i=0; i<=(m-1);++i)  

         b [i,0]= [(a[i,0] ⊕ s-edge2[i,0]) 
2
 +  

                        (a[i,0] ⊕ sp-edge2[i,0]) 
2
] 

1/2
}  

     /* Edge3 partitioning condition is  (i=(m-1)) */ 
    {for (int j=0; j<=(n-1);++j)  

 b [(m-1),j]= [(a[(m-1),j] ⊕ s-edge3[(m-1),j]) 
2
 +  

                      (a[(m-1),j] ⊕ sp-edge3[(m-1),j]) 
2
] 

1/2
}  

      /* Edge4 partitioning condition is  (i=(n-1)) */ 
     {for (int i=0; i<=(m-1);++i)  

         b [i, (n-1)]= [(a[i, (n-1)] ⊕ s-edge4[i, (n-1)]) 
2
 +  

         (a[i, (n-1)] ⊕ sp-edge4[i, (n-1)]) 
2
] 

1/2
}  

        _endthread( ); }                                                      (9) 
 
Notice that in expression (9), partial evaluation plus 

inference has caused one of each pair of the edge loops in (9) 
to evaporate and the edge index max or min values (e.g., 0 or 
(m-1) )  to appear in one of the index positions in the array 
expressions. In the implementation, these loop refinements 
occur concurrently with the inlining of the IL definitions (see 
the following section) but in the name of simplicity, showing 
it here shortens (9) and makes it easier for the reader to 
understand.  

While the expansion of the ?DoASlice routine is longer 
than SobelEdges9, it is important because is shows the 

default partition specialization (i.e., the center slice 
partition). It is populated with the Aslice loop constraint plus 
the INS specialized to S-Center5-ASeg and SP-Center5-
ASeg. The example code is shown with a slice size of 5 but 
alternatively, it could be declared by the user to be a 
parameter. Before inlining the IL definitions, the ?DoASlice 
routine is specialized to: 

 

void SobelCenterSlice10 (int h)  

 {  

  for (int i=h; i< =min((h+ 4),(m-1)); ++i)  

        {for (int j=1; j<=(n-2); ++j)  

    {b [i,j]= [(a[i,j] ⊕ s-center5-Aseg[i,j])
2
 +  

                      (a[i,j] ⊕ sp-center5-ASeg[i,j])
2
]

1/2
 } } 

    _endthread( );   }            (10) 
 
Like (9), form (10) shows the loop refinements out of 

order to save space and make (10) easier to understand. The 
range of j is now [1,(n-2)] rather than [0,(n-1)] because of the 
effect of the partitioning condition. 

 

4)     Inlining Intermediate Language Definitions 

The DSLGen
TM

 Inlining phase will inline the IL 
definitions, replacing the convolution expressions with their 
definitions such as that of the convolution operator, i.e., 

 
(* (a[(row sp-Edge1 a[i,j] p q),  (col sp-Edge1 a[i,j] p q)] )  
    (w sp-Edge1 a[i,j] p q))

2
                                                 (11) 

 
for each partition specific INS clone. The inlining will 
continue recursively for the lower level IL definitions, e.g., 
row, col and w (where row and col map from neighborhood 
coordinates to matrix coordinates). Since (w sp-Edge1 a[i,j] 
p q) is defined as 0 in (5), expression (11) partially evaluates 
to 0. Similarly, all other convolution expressions involving 
edges partially evaluate to 0. After all of the inlining and 
partial evaluation (but before adding local declarations), 
expression (9) becomes  expression (12): 

 
void Sobel Edges9( )  
 { /* Edge1 partitioning condition is  (i=0) */ 
   {for (int j=0; j<=(n-1);++j) b [0,j]=0;}  
  /* Edge2 partitioning condition is  (j=0) */ 
  {for (int i=0; i<=(m-1);++i) b [i,0]= b [0,j]=0;}  
  /* Edge3 partitioning condition is  (i=(m-1)) */ 
 {for (int j=0; j<=(n-1);++j) b [(m-1),j]=0;}  
  /* Edge4 partitioning condition is  (i=(n-1)) */ 
         {for (int i=0; i<=(m-1);++i) b [i, (n-1)]= 0;}  
   _endthread( ); }                                                (12) 
 
And analogously for the ?DoASlice routine, after a series 

of inlining steps analogous to the Edge1 partition refinement 
process but without the extensive simplification engendered 
by the IL definitions for the edge partitions, the center slice 
partition case (10) refines into: 
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void SobelCenterSlice10 (int h)  

{long ANS45;  long ANS46;  
 /*  Center5-KSegs partitioning condition is   
      (and (not (i=0))  (not (j=0))  (not (i=(m-1)))  
              (not (j=(n-1)))) */ 
  /*  Center5-ASeg partitioning condition is   
       (and (not (i=0))  (not (j=0))  (not (i=(m-1)))  
                (not (j=(n-1))) (h<=i)(i<=(min (h+4),(m-1))))*/ 
   for (int i=h; i<min((h+ 4),(m-1)); ++i) {  
      for (int j=1; j<=(n-2); ++j) {  
  ANS45 = 0;   
  ANS46 = 0;  
  for (int p=0; p<=2; ++p) {  
    for (int q=0; q<=2; ++q) {  

      ANS45 +=  
        (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))*  
            ((((p - 1) != 0) && ((q -  1) != 0)) ? (p - 1):  

  ((((p - 1) != 0) && ((q -  1) == 0)) ?  
                             (2 * (p - 1)): 0)));  
              ANS46 +=  
          (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))* 

            ((((p - 1) != 0) && ((q -  1) != 0)) ? (q - 1):  
   ((((p - 1) == 0) && ((q -  1) != 0)) ?  

      (2 * (q -  1)): 0)));   }}  
             int i1 = ISQRT ((pow ((ANS46), 2) +   

            pow ((ANS45), 2)));  
        i1 = (i1 < 0) ? 0 : ((i1 > 0xFFFF) ? 0xFFFF : i1); 
        ((*((*(A + (i))) + j))) = (BWPIXEL)  i1;   }} 
         _endthread( ); }                                                 (13) 
 
The examples are adapted from generated code to 

accommodate the format and space available. For example, 
in generated code, i and j would be generated names like 
idx3 and idx4. Similarly, p and q would be something like 
p15 and q16. Additionally, in (13), a discussion of the 
introduction of the answer variables (e.g., ANS45) and the 
masking expression near the end is beyond the scope of this 
paper.  

The reader will note that the inlining step has introduced 
some common sub-expressions (e.g., (p - 1)) which will 
degrade the overall performance if not removed. If this code 
is targeted to a good optimizing compiler, these common 
sub-expressions will be removed by that compiler and 
thereby the performance improved. However, if the target 
compiler is not able to perform this task, DSLGen

TM
 offers 

the option of having the generator system remove the 
common sub-expressions and this can be easily added to the 
specification of the execution platform. However, the 
common sub-expressions are explicitly included in this 
example (i.e., not optimized away) to make the connection to 
the structures of the MTs used by the INS more obvious to 
the reader. The broad structure of the right hand operand of 
the times (*) operator in the right hand side of the 
assignments to the answer variables ANS45 and ANS46 is 
structurally the same as that of the W method transform 
specialized to the center partition for SP and S. That is, the 
right hand side of ANS46 is the C form: 

 

 

((((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))    *  

  ((((p - 1) != 0) && ((q -  1) != 0)) ? (q - 1):  

   ((((p - 1) == 0) && ((q - 1) != 0)) ? (2 * (q - 1)): 0)))   (14) 

 
It mimics the form of the MT definition for w of SP-Center5 
because (14) is derived by inlining that MT definition and 
eventually processing it into legal C.  For reference, the rhs 
of the MT definition of w of SP-Center5 has the form 

 

(if (and (!= ?p 0) (!= ?q 0))   

      (then ?q) 

      (else (if  (and (== ?p 0) (!= ?q 0))  

              (then (* 2 ?q)) 

                     (else 0)))).           (15) 

 
When the inlining occurs, the SP-Center5 generator 

pattern variable ?p is bound to “(p - 1)” and ?q is bound to 
“(q -  1)”. The “- 1” part of these values arise because of the 
C indexing design feature encapsulated earlier in the 
generation process. Recall that that design feature maps the 
domain language indexing system for neighborhoods (i.e.,   
[-n, +n] ) to a C language style of indexing   (i.e., [0, 2n]). 

VI. THE DSLGEN
TM

 PROTOTYPE 

DSLGen
TM

 is the culmination of a multi-year R&D effort 
and comprises about 52KLOC of CommonLisp and CLOS 
running on Franz Allegro, version 8.2. A key component of 
the architecture upon which many of the other components 
are built is a general pattern matching system with 
backtracking, which is built using continuations.  Built on 
top of the pattern matcher is a transformation system that 
includes several flavors of transformations (e.g., general, 
MTs, generic components, and deferred, where deferred 
transformations are used to move newly created subtrees up 
the abstract syntax tree). The transformations are specific to 
a specific generator phase (i.e., they are only enabled during 
the named generator phases to which they apply, e.g., the 
SyntheticDesign phase).  

The partial evaluator and several specialized inference 
subsystems are also heavy users of the pattern matcher. The 
inference systems include a type inference system, a 
backchaining rule system, a logical expression simplifier 
based on logical subsumption and an inequality inference 
engine based on Fourier-Motzkin elimination. The inequality 
inference engine is used for inferring relationships among 
logical architecture elements (e.g., inferring that (i == ( m - 
1) ) is false when (i == 0) and (m>1) are true) . 

As to generation performance, a Sobel example on RGB 
images with partitioning but without load leveling or threads 
takes about 75 seconds to generate an Abstract Syntax Tree 
(AST) for C (or 40 to 50 seconds if not generating history 
and traces). Adding in the surface syntax to generate the text-
based C files adds an additional 15 to 20 seconds. Adding 
multicore with threads, SIMD (Single Instruction, Multiple 
Data) instructions and various other architectural 
complexities increases generation times by small amounts. 
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VII. PERFORMANCE TESTING 

Generated code was tested with a selection of 
implementation variations on a 4 core, 3.33 GHz Velocity 
brand computer with 12 GB of real and 24 GB of virtual 
memory. The test computer is built on the Intel i7 CPU with 
Turbo mode, which allows overclocking when the CPU is 
running under maximum temperature and power 
specification. It has 8 virtual processors. The code was 
compiled with Microsoft’s Visual Studio 2008 C/C++ 
compiler.  

The test data was a 215 by 215 pixel image in RGB 
format with a 24 bit pixel depth. The chosen computations 
included Sobel and Wallis edge detection methods [28] since 
they put a greater computational load on the machine than 
other possible computations might. In addition, Sobel 
provides one of the more serious challenges to the generator 
in that it requires use of virtually all of the generation 
facilities. The testing also included image Average and 
Unsharp Mask [28] (often used to sharpen Mammogram 
images), both of which have lighter computational loads.  

 
 

 

Figure 6. Performance vs. thread count 

Figure 6 shows the results for various computations 
decomposed into threads to be run in parallel. These tests 
were run 10,000 times per image. For Sobel, the best 
performance was achieved at 55 threads, which required 
approximately 20.3 seconds to run the full set, or about 2 
milliseconds per image. The worst results were with two 
threads, one for the edge cases and one for the center, which 
required approximately 105 seconds for the 10,000 images or 
a bit over a 10 millisecond per image. This was roughly the 
same time required for the calibration case, a hand coded 
version compiled to use no parallelism of any kind. Notice 
that the time drops quickly with five threads (i.e., one for the 
edges and four for the image center), taking about 32.8 
seconds for the full set of images or about 3.3 milliseconds 
per image. This is about what simple logic would expect 
with four cores. However, the time continues to improve 
modestly for each five or so additional threads until it begins 
to level out at about 20.5 seconds at about 23 threads. 
Thereafter, the improvement is a tenth of a second or so for 
five or so additional threads. It is somewhat counter intuitive 
that one should get any improvement at all after the image 
has been evenly decomposed over the four cores. It is not 

entirely clear why this occurs but our current hypothesis is 
that it may be the “GPU effect” where many threads can 
mask memory, cache or other kind of latency if thread 
switching is efficient enough. Also, fast thread switching 
among virtual processors in the hardware (called 
Hyperthreading) may play a role. The target computer has 
two virtual processors per core and this is known to increase 
overall performance in many cases. 

Other test cases with different kinds of image processing 
functions show similar behavior although the computational 
loads vary based on the nature of the computation. Sobel and 
Wallis have computational heavy loads that just simply 
require hefty computational capacity. Sobel employs square 
roots and Wallis uses logarithms. On the other hand, 
Average and Unsharp Mask are both light weight 
computations that employ little more than addition and 
division. Hence, they require less computational capacity as 
is clear from the graph. 

With the addition of SIMD instructions (Fig. 7), the 
added improvement for Sobel ranges from about a 14% 
improvement for few or no threads to 36% for the maximum 
number of threads tested.  With only two threads, Sobel took 
87.2 seconds for all 10K images or 8.7 milliseconds per 
image, whereas with 55 threads, it took  12.87 seconds for all 
10K images or about 1.3 milliseconds per image. 

Interestingly, the SIMD effect with threads for Image 
Average was significant and somewhat surprising – between 
57% and 58% improvement regardless of the number of 
threads. What this suggests is that virtually all of the 
computation for Image Average can be done with instruction 
level parallelism (i.e., addition of a vector of numbers) 
leaving only a single additional arithmetic operation (i.e., 
multiplication or division by a constant) to be done via the 
standard arithmetic unit. So, the multicore parallelism 
improvement is a much flatter curve. Once one runs out of 
processors there is little additional effect although there may 
be some additional effect depending on the structure of the 
computation and its possible effect of processor latencies. 
Recall the comments from the previous discussion about the 
counter intuitive improvement for Sobel beyond 5 or so 
threads. 

Figure 7. Threads and SIMD 
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By contrast, a much smaller amount of the Sobel 
computation is done in parallel instructions (i.e., the 
PMADD operation on the three weight vectors and the three 
corresponding pixel vectors, where each of the vectors is 
only three numbers long) whereas the addition of the 
intermediate instructions (via the PADD instruction) is 
relatively inconsequential. But more importantly, the square, 
addition and square root operations that follow the SIMD 
instructions will be done on the standard CPU arithmetic 
unit. These last three operations (and especially the square 
root operation) are likely to be the lion’s portion of the 
computation. Therefore, the really big improvement with 
Sobel arises because of the large scale parallelism provided 
by the thread based parallelism and this tends to swamp 
much of the savings of the instruction level parallelism of the 
SIMD instructions. 

VIII. RELATED RESEARCH 

A key difference between most previous research and 
DSLGen

TM
 is that DSLGen

TM
 starts working strictly in the 

problem domain and programming process domain rather 
than the PL domain. Virtually all previous research chooses 
representation systems that are based to some degree upon 
PL constructs or abstractions thereof. This includes 
compiling technology, generator technology [4] [5] [7] [22] 
[29] [30], computer aided software engineering (CASE) [13], 
model driven engineering [22], Aspect Oriented 
Programming (AOP) [17], Anticipatory Optimization 
Generation (AOG) [6] [7], general optimization based  
methods [1] [20] [16], parallel or specialty programming 
languages [8] [12], programming languages superficially 
similar to DSLGen

TM
‘s partitioning model [14], 

programming language augmentation systems [15] [27], 
maintenance support systems [1] [2], refactoring [18] and 
other related technology and methods for creating 
implementation code from a specification of a computation. 
The PL based representational choice forces conventional 
generation technologies to introduce design and PL forms, 
implementation structures, organizational commitments and 
other execution platform based details too early and thereby 
make design decisions about the architecture of the solution 
that will prevent other desired design decisions from being 
made later. Or at least, it will make those other desired 
design decisions require revision of the model or design, 
which is very often difficult to automate within a PL oriented 
domain.  

In general, there are two important properties that 
differentiate these various approaches from DSLGen

TM
: 1) 

The specifications of the computations in these approaches 
are typically not invariant over all or even a variety of 
execution platform architectures, and 2) target program 
implementations exploiting specific high capability features 
cannot be fully and automatically generated without 
compromising the invariance property. That is, user action is 
required either to revise the computational specification 
model to fit the new execution platform or to extend an 
overly abstract and therefore incomplete input specification 
to target a specific execution platform. Generation of target 
program implementations for a variety of execution 

platforms that exploit the execution platform features (e.g., 
multicore parallelism, vector instructions, etc.) requires 
human redesign or reprogramming in one form or another. 
For example, in these approaches, the transition from one 
execution architecture (e.g., simple Von Neumann) to 
another (e.g., multicore and/or vector machines) requires 
user action to adapt the computation specification or model 
to the new execution architecture.  

In many cases, these conventional technologies often 
force a top down, reductionist approach to design where the 
top level programming structure and the essence of its 
algorithm are expressed first and then the constituent essence 
is recursively extended step by step until the lowest level of 
PL details are expressed. However, that initial structure may 
be incompatible with some desired design requirements or 
features that are addressed later in the development or 
generation process. The initial design may have to be 
reorganized to introduce such design requirements or 
features. For example, the requirement to fully exploit a 
multicore computer requires a significant, difficult and many 
step reorganization to fully exploit the performance 
improvements possible with multicore. Automation of such 
reorganizations at the programming language level is 
seriously complicated and except for relatively simple cases 
is prone to failure. This is why compilers that can compile 
programs written and optimized for one execution platform 
are often unable to satisfactorily compile the same programs 
for a different execution platform with an architecture that 
employs a significantly different model for high capability 
execution and fully exploit the high capability features of the 
new architecture. For example, programs written for the pre-
2000 era Intel platforms are largely unable to be 
automatically translated to fully exploit the multicore 
parallelism of the more recent Intel platforms. Human based 
reprogramming is almost always necessary to fully exploit 
the multicore parallelism.  

While much research has been highly PL oriented, some 
research is clearly working in the problem domain. A prime 
example is the work of Jim Neighbors, who introduced the 
idea of using domain specific information in program 
generation. [24] [25] [26] His approach is to map from 
purely problem domain oriented languages through a series 
of language to language mappings, incrementally evolving to 
pure programming language representations. While 
DSLGen

TM
 is consistent with that spirit, the underlying 

machinery (e.g., the non-reductionist design approach, the 
non-PL logical architecture model, the APCs, the 
incremental design feature encapsulation and the incremental 
addition of sets of PL features phase by phase) distinguishes 
the DSLGen

TM
 approach from Neighbor’s work. 

Nevertheless, Neighbors’ work has made significant 
contributions to program generation from which this work 
has benefited.  

IX. CONTRIBUTIONS 

The contributions of this work are due in large part to the 
fact that this work breaks with convention in a number of 
ways. Perhaps the most important break is avoiding the PL 
domain in the initial modeling process. This allows the 
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implementation neutrality of the INS and allows the 
separation of the INS from the specification of the 
execution platform (EXPS) while still allowing the 
generated programs to exploit the full range of high 
capability features of the EXPS platform. While some 
systems emphasize language neutrality [30] rather than 
implementation neutrality, their specifications clearly derive 
from the PL domain and they therefore inherit the liabilities 
of the PL domain.  

The ability of DSLGen
TM

 to exploit high capability 
features arises from another important contribution, 
specifically, the design representation system based on 
associative programming constraints. The design 
representation system allows the initial and early stage 
designs to be organized as logical architectures thereby 
allowing the system to operate in the problem and 
programming process domains and to introduce PL 
constructions and assumptions incrementally. Operating with 
problem domain concepts such as edge and center partitions 
allows DSLGen

TM
 to begin to manipulate and extend the LA 

without (initially) being restricted by the constraints inherent 
to programming languages. 

Organizing the IL definitions as provisional 
transformations that are malleable provides the opportunity 
for incrementally adding design features by using higher 
order transformations to revise the IL definitions to 
incorporate those features but still defer casting them into 
programming language constructs until late in the generation 
process. Thus, the IL becomes the stand-in or precursor 
representation for the code details that have yet to be 
concretely determined. For example, expressions like 
Partestx(sp) can stand-in for code or meta-information (e.g., 
assertions) that cannot be refined to concrete form until the 
implementation context (e.g., a specific partition) and locale 
(i.e., the location in the AST) are concretely and finally 
determined. And when that context is eventually pinned 
down (e.g., to Edge1), Partestx(sp) can be specialized (e.g., 
to Partestx(sp-Edge1)), which will move it a step closer to 
refinement into a concrete logical expression. 

DSLGen
TM

 relies heavily on inference and implication. 
For example, the APCs are described by a set of logical 
assertions that are augmented as the design progresses. This 
allows architectural features and programming clichés to 
be expressed inferentially rather than structurally and 
proscriptively.  This defers making PL level design 
decisions. These PL representational forms are hard to 
revise, change and manipulate. For example, in DSLGen

TM
, 

adding messy design details and programming clichés can be 
deferred until the broad architectural structure is settled. 

In summary, DSLGen
TM

 represents a fundamentally new 
paradigm for program generation. 
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