
Copyright Software Generators, LLC, 2013

Automated Optimization of a Computation for Different Architectures

Ted J. Biggerstaff

Software Generators, LLC

Austin, Texas USA

dslgen at softwaregenerators dot com

Abstract—DSLGenTM (Domain Specific Language Generator)

is a program generation system in which application programs

can be written in a domain specific language that is

independent of the execution platform architecture and yet can

be targeted to arbitrary existing and future execution

platforms in a way that exploits the performance or

computation improvement opportunities specific to those

platforms. This allows switching from one execution platform

to another without reprogramming the applications. The

generation of target programs is fully automatic and requires

no user input or action beyond the specification of the

computation and the separate specification of the desired

features of the target execution platform.

Keywords -- associative programming constraints, natural

and synthetic partitions, design patterns, logical and physical

architectures, design feature encapsulation, implementation

neutral specification, domain specific languages, inference,

problem domain inference, partial evaluation.

I. INTRODUCTION

DSLGen
TM

 (patents issued [8] [9] [10] and patent
pending) is a transformation-based program generation
system that fully automatically generates a target
implementation optimized for a variety of target execution
architectures from two independent specifications: 1) a
domain specific, Implementation Neutral Specification (INS)
of the desired computation and 2) a domain specific
EXecution Platform Specification (EXPS) that describes
what optimization features of the execution platform should
be exploited. The INS is invariant over all target execution
platform architectures. That is, an application programmer
can make no predictions about the architecture of the target
implementation by looking at the INS alone. Thus, no
reprogramming of the INS is required to switch from one
platform to another. Only the EXPS features need to be
changed to switch from one architecture (e.g., multicore) to
another (e.g., vector machines). Importantly, DSLGen

TM

fully automatically converts an INS and an EXPS into target
implementation code that takes advantage of a broad range
of opportunities for high capability computations including
large grain parallelism (e.g., multicore CPUs), small grain
parallelism (e.g., instruction level parallelism or ILP), design
pattern frameworks and so forth. It is theoretically possible
to extend DSLGen

TM
’s capabilities to other target execution

platforms such as GPUs, Digital Signal Processors (DSPs),
specialized processors, Field Programmable Gate Arrays
(FPGAs), and API interfaces to layered implementations or
libraries. The author believes that DSLGen

TM
 can be

extended with new transform sets that will produce output

optimized for virtually any arbitrary existing or future
architecture. How can DSLGen

TM
 automatically produce

programs that are tailored to such highly varied execution
architectures?

The short answer is that DSLGen
TM

 is an extensible
generator that is designed to create a program design from
scratch based on the INS plus generalized constraints and
design features specified in the EXPS. In some sense, it is
doing what a human programmer does. DSLGen

TM

automatically builds a Logical Architecture (LA) that
constrains some problem domain oriented features of the
target program design but defers building a Physical
Architecture (PA) that commits to programming language
and implementation platform oriented features (e.g., routine
architectures, parametric connections, communication
patterns and synchronization patterns). That is, DSLGen

TM

architects, designs, constrains, reorganizes and optimizes the
target program in the problem and programming process
domains rather than in the programming language (PL)
domain and only after the macroscopic structure of the
program is settled does it generate PL level code. In short, it
designs the solution first and codes it second.

Part of the secret to this process is that DSLGen
TM

eschews PL based representations during the design and
architecture portion of the process thereby freeing it from the
highly restrictive constraints of PLs. PLs are solution
oriented not problem oriented. They require the programmer
to tell how to perform a computation whereas during these
early phases, the programmer knows what needs to be done
and what design features the solution will have (i.e., the
computational goals) but has not yet fully determined how to
implement and integrate the computational needs and
solution features.

II. THE PROBLEM

A key problem in exploiting the capabilities of various
existing and future execution platform architectures for a
specific target computation is the conflict between the goal
of precisely describing the implementation of a target
computation and the goal of casting the implementation into
a diversity of forms each of which exploits a different set of
high capability features of some specific execution platform
architecture (e.g., parallel processing via multicore based
threads). The key culprit in this conflict is the representation
system used in the course of specifying the function of a
target program – that is, the use of programming language
based abstractions to represent the evolving program at each
stage of its development and evolution. Einstein said “We
see what our languages allow us to see.” And when a
computer scientist understands his or her world in terms of

Copyright Software Generators, LLC, 2013

programming languages, it is natural to construct
intermediate design and precursor representations of
programs in terms of programming language (PL) based
abstractions. This has led to the conventional, reductionist or
layered models of program designs.

These models may range from relatively concrete models
built from minimally abstracted PL structures (e.g., abstract
data types and object oriented models) to quite abstract
models (e.g., Model Driven Engineering models [23]) that
attempt to defer a greater number of concrete commitments
in an effort to allow a greater diversity of eventual concrete
program manifestations. The layers within the models may
represent a variety of features or structures that eventually
will be projected fairly faithfully into the structures of the
final program (e.g., class diagrams). The layers also may
represent specifications of behaviors (e.g., state diagrams)
that will affect the final structure of the program in less direct
ways but nevertheless are still partially expressed in terms of,
and therefore imply, some structural elements of the final
target program. The author believes that such PL based
models have been a key impediment to mapping an
implementation neutral specification of a computation to an
arbitrary platform while still exploiting whatever high
capability features that platform possesses. The problem, in
summary, with PL based representations (regardless of their
level of abstraction) is that the layers within the overall
model of a computation have unintended and hidden
interdependencies that arise because of the PL based
abstractions. These often force implementation driven design
goals (e.g., exploit multicore parallelism) to propagate
complex, interrelated revisions and restructurings globally
across many or all of the layers of the model. Why does this
occur?

Typically in such a layered model, the structure and some
details of a layer of the target program are specified along
with some abstract representation of the constituent elements
(i.e., lower level layers) of that layer. In human based
application of layered design, the abstract elements of the
lower level layers are often expressed in terms of a semi-
formal pseudo-code or structural specification. In the
automated versions of layered design, the informal
specification is often replaced by somewhat more formal
expressions (i.e., UML specifications [31]) of the interfaces
to the lower level layers. For example, these might be simple
routine calls, object oriented invocations, sub-types, sub-
classes or skeletal forms of elements that remain to be
defined. Alternatively, these interfaces may be calls to or
invocations of concretely defined API layers or interfaces to
message based protocols (e.g., finite state machine
specifications). In any case, the structure is typically fixed at
a high level before the implications of that structure become
manifest in a lower level later in the development process.
Refinements within the lower layers often require changing
or revising the structure at a higher level, which can be
problematic. Further, in an automated system, distinct
programming design goals will be, by necessity, handled at
different times. This is further complicated by the fact that
multiple design goals may be inconsistent (at some level of
detail) or at least, they may be difficult to harmonize.

A good example of this kind of difficulty is trying to
design a program to exploit thread based parallel
implementation. The exact structure and details of the final
program are subtly affected by a myriad of possible problem
features and programming goals. A threaded implementation
will require some thread synchronization logic which may be
spread across a number of yet to be defined routines. The
computation will have to be partitioned into parts that are
largely determined by the specifics of the target computation.
These partitions will be mapped into routines and threads
(e.g., some lightweight computations batched in one thread
and other heavyweight computations decomposed into slices
with their own threads). The thread protocol will introduce
low level implementation details that potentially will have to
be harmonized across a number of routines. The parameter
choices for these routines (i.e., the plumbing) may be
involved in the communication design for these thread
routines and will be constrained by low level implementation
details of the thread protocol. In DSLGen

TM
, such

programming language level routine structures, routine inter-
communication decisions, thread protocol restrictions and
thread library implementation requirements are added into
the architecture close to the end of the design process after
simplified logical architectures (LAs) of the elements of the
domain specific computation specification (e.g., the INS)
have been sketched out in broad general terms, terms that
elide and defer much of the PL level detail. For example, the
early LA design for thread based designs, vector machine
designs, GPUs or others are indistinguishable from one
another. Furthermore, the division of the computation into
functions or routines and the parametric interconnection of
those routines has yet to be decided when the LA is first
sketched out.

If an automated generator tries to handle all of these
various design issues at once, there is an overwhelming
explosion of cases to deal with and the approach quickly
becomes infeasible.

III. THE SOLUTION

The ideal solution would be to recognize design goals
and assert the programming objectives (e.g., thread based
parallelism) provisionally without committing fully and
early-on to constructing the PL structures and details. Why?
Because those PL structures and details are likely to change
and evolve as the target program is refined toward a final
implementation. That potential change and evolution is
difficult in the PL domain because of the subtle
interdependencies among the PL structures and details. For
example, data flow dependencies in the context of scopes
and routines make code movement and revision quite
complex. The ideal solution would allow each atomic design
objective or intended design feature to be introduced one at a
time. These design objectives and intended design features
would imply and constrain the eventual code but not
immediately construct it. It is far easier to back out of or alter
design objectives and intended design features than it is to
alter the eventual code forms that express those design
objectives and intended features. In the ideal solution,
previously asserted provisional commitments could be

Copyright Software Generators, LLC, 2013

altered before they are cast into concrete code. And this idea
is the essence of DSLGen

TM
.

DSLGen
TM

 allows the construction of a logical
architecture (LA) that levies minimal constraints on the
evolving program and explicitly defers generating
programming language structures (either concrete or
abstract) early on. That is, initially the LA will constrain only
the decomposition of a computation into its major (and
natural) organizational divisions (which are called natural
partitions) omitting any PL details of the programming
routine structure or PL details of those major organizational
divisions. There is no information on control structure,
routines, functions, threads, parametric connections, data
flow connections, machine units, instruction styles, parallel
synchronization structures and so forth. All of that is
deferred and added in step by step as the generation process
proceeds. In fact, the LA will be revised and evolved step by
step via the encapsulation of individual design features, each
of which will further constrain the final expression of the
target program.

A. Associative Programming Constraints and the LA

DSLGen
TM

 builds the LA out of a new kind of
representation element – an Associative Programming
Constraint (APC). APCs are partial and provisional
constraints on the target computation. They do not fully
determine the target implementation. The motivation for
APC’s is analogous to the motivation for modifiers in natural
language. That is, an APC is a modifier of a domain specific
expression (e.g., a convolution expression) and it implies
some distinct (possibly global) design feature in the eventual
programming language (PL) implementation form of that
domain specific expression. For example, the APC might
provide the “nominal” form of the loop or loops required to
perform the computation. However, this is only a partial
specification of the PL implementation form because it does
not determine the context or even the concrete
implementation form of the loops. There are many open
questions unanswered by a singular APC. For example: Are
the implementation loop or loops partitioned into pieces?
And are those loop pieces organized into thread routines or
re-expressed as Intel’s SSE vector instructions (e.g.,
PMADD instructions)? If SSE instructions, what triggers the
reorganization necessary to reform the weight values into
vectors? And so forth. Thus, a singular APC is unlikely to
be sufficient to generate the desired implementation for the
target implementation. It is unlikely that code written
directly from a singular APC will be the same as the eventual
code of the generated target implementation. Too many other
design features (represented by other APCs) will be needed
to fulfill the requirements imposed by the user’s description
of the execution platform features to be exploited in the
target routine. It is much more likely that a number of APCs
will be required to fully specify the PL implementation.
Furthermore, there is seldom a one to one mapping between
an APC and a programming language abstraction in the
target implementation. More generally, the mapping is many
to many. Moreover, like modification structures in natural
language, these APCs will need to be formulated into a

structure (i.e., the logical architecture) that captures the
interrelationships among them. For example, a partitioning
APC may modify a loop APC and therefore imply addition
features of the PL loop implementation.

APCs come in two major varieties: Iteration constraints
and partition constraints. For example, a loop constraint (a
subclass of iteration constraint) might specify “i” and “j” to
be provisional indexes of a matrix “a”. They might have
ranges of [0,(m-1)] and [0,(n-1)], respectively. And related to
this loop constraint, for example, might be a partition
constraint (e.g., Edge1) that modifies the loop and specifies
the subdivision of that loop in which (i==0). In other words,
the Edge1 partitioning constraint implies that the loop over i
is degenerate and will refine to the operation that is just the
body of the loop. Nothing further about the implementation
is determined by these constraints.

Conventionally, one tends to think of “constraints” as
being represented by some kind of formulaic expression
(e.g., a predicate calculus expression). However, while
formulaic expressions do play a role in some APCs (e.g.,
partition APCs will have a so-called “partitioning condition”
expression), APCs also have several additional
representational facets and features. Operationally, they are
CommonLisp Object System (CLOS) objects that are
associated with elements of the INS and initially arise via
translation of the INS. They imply something about the
eventual PL implementation of that INS expression by their
existence and interrelationships. But beyond that, because
they are problem domain entities and not programming
language abstractions, they also may have problem domain
knowledge features or properties that are useful to the
generator. For example, image “edges” have the domain
property of being “lightweight” computations and that
property may be employed by the generator to decide upon
the details of thread designs. Later in this paper, we will see
that the edge loops in a thread design are batched into a
single thread rather than each having their own thread. The
“lightweight” domain property is used heuristically by the
generator to make that design decision. Similarly, image
center partitions are known to be “heavyweight”
computations because there are often many individual
computations to be performed and because the individual
computations are often fairly complex. That domain property
will be used by the generator to decide to slice the center
partition into computational slices and to assign each to its
own parallel thread.

The constraining affects of APCs will likely need to be
altered and refined as the generation process proceeds and
this will be effected by altering and specializing the
definitions of the constraints. For example, an edge partition
that modifies (i.e., is associated with) a loop, is likely to
cause component definitions specific to that edge to be
specialized thereby altering the loop’s beginning index value,
ending value and increment. Those specializations may lead
to loops completely evaporating, which will happen in the
forthcoming example. Furthermore, some specialized
definitions (e.g., the definition of the weight coefficient for a
neighborhood specialized to an edge) may cause
simplification of a loop’s body, which might compute the

Copyright Software Generators, LLC, 2013

value of a single edge pixel. In the forthcoming example, the
code to compute an edge pixel will simplify to 0. Such
simplification is effected via DSLGen™‘s built-in partial
evaluation system (see also [21]).

B. Creating and Evolving the Logical Architecture

Loop APCs are created and propagated over the INS

structure (somewhat analogously to APL’s method of loop
introduction and placement). In the course of that process,
the creation of a loop APC may trigger the creation of
partition APCs by a process we will describe in a moment.
APCs are combined in several ways. For example, the
operational effect of combining equivalent APC sets, is to
merge equivalent iterations (e.g., two loop APCs) or to adapt
two slightly different computational cases to a single
interation scheme (e.g., the computations introduced by two
separate domain specific operators such as convolution
operators). APCs can be split in two, reorganized into groups
that imply future design features and revised to incorporate
one or more elective design features (e.g., multicore,
threaded design). Furthermore, partition sets of logically
orthogonal APCs can be combined by a cross product
operation to produce a new set of partitions. Not until later in
the generation process are the APCs actually applied by
replicating and cloning the INS into multiple distinct forms
specialized for different partitions of the implementation.
These specialized INS clones are the precursors to the actual
PL expression of the target implementation.

Specialized versions of APCs may be created by
subclassing, thereby allowing other kinds of architectural
factorings. For example, an image center partition may be
specialized to a slice of an image center in anticipation of
computing slices of the image center in parallel threads.

To provide a concrete context in which to discuss the LA
and its representational elements, we will introduce a
problem domain, a domain specific language for that
problem domain and a concrete example.

IV. THE PROBLEM DOMAIN AND AN EXAMPLE PROBLEM

The initial problem domain treated by DSLGen
TM

 is
digital signal processing (DSP) and includes problems that
range from signal and image processing to neural networks
to pattern recognition plus a rich set of related problems. The
domain specific language used to express the INS is based
on the Image Algebra (IA) [28].

As an example computation, we develop a program that
performs Sobel edge detection on a grayscale image (i.e.,
where the pixels are shades of gray). Such a program would
take, for example, the image “a” in Fig. 1 as input and
produce the image “b” in Fig.2 as output. The output image
has been processed so as to enhance (line) edges of items in
the image by the Sobel edge detection method.

Each black and white pixel b[i,j] in the output image “b”
is computed from an expression involving the sum of
products of pixels in a neighborhood (e.g., sp, of type
iatemplate) surrounding the a[i,j] pixel and the coefficients
defined by that neighborhood (e.g., sp). This is called a
convolution of a matrix with a template (or neighborhood).

In the IA, a convolution is designated by the ⊕ operator, e.g.,

(a ⊕ sp). In the following examples, s and sp will designate
instances of the class iatemplate. Mathematically, the Sobel
computation is defined as

{Foralli,j (bi,j : bi,j = sqrt((∑p, q (w(s)p , q * a i+p , j+q)

2
 +

 ∑p, q (w(sp)p , q * a i+p , j+q)
2
)} (1)

where i and j are indexes that range over the matrices a and
b; p and q are indexes that range over the iatemplate
neighborhoods s and sp; and the coefficients of the
neighborhood (which are also called weights) are defined by
the function “w”. For Sobel edge detection, the weights are
all defined to be 0 if the center pixel of the neighborhood
corresponds to an edge pixel in the image (i.e., w(s) = 0 and
w(sp) = 0), and if not an edge pixel, they are defined by the s
and sp neighborhood weights shown in (2). It is convenient
to index the neighborhoods in the DSL from -1 to +1 for
both dimensions so that the current pixel being processed is
at (0, 0) of the neighborhood.

48476
Q

101

121

000

121

1

0

1

P)(

−















 −−−







−

=sw

48476
Q

101

101

202

101

1

0

1

P)(

−

















−

−

−







−

=spw

(2)

Since an implementation of this computation for a

parallel computer may not be organized like the
mathematical formula, it is useful to represent this
specification more abstractly because such abstractions can
defer the implementation and organization decisions and
thereby allow the computation (i.e., what is to be computed)
to be specified completely separately and somewhat
independently from the implementation form (i.e., how it is
to be computed). Thus, the abstract computation
specification is independent of the architecture of the
machine that will eventually be chosen to run the code.
Choosing a different machine architecture for the
implementation form without making any changes to the
specification of the computation (i.e., the what), will
automatically generate a different implementation form that
is tailored to the new machine’s architecture. More to the
point, porting from one kind of machine architecture (e.g.,
machines with instruction level parallelism like Intel’s SSE
instructions) to a different kind of machine architecture (e.g.,
machines with large grain parallelism such as multi-core
CPUs) can be done automatically by only making trivial
changes to the machine specifications and no changes to the
computation specification (i.e., the what). The publication
form in [28] for the Sobel Edge detection mathematical
formula (1) is based on the Image Algebra domain specific
language (DSL). Re-expressing the formula (1) in the Image
Algebra gives a first cut at the INS for the Sobel example:

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
 (3a)

 Of course, the INS will need some declarations for a, b,

s, sp, etc.:

Copyright Software Generators, LLC, 2013

(DSDeclare IATemplate s :form (array (-1 1) (-1 1))

:of DSNumber)
(DSDeclare IATemplate sp :form (array (-1 1) (-1 1))

:of DSNumber)
(DSDeclare DSNumber m :facts ((> m 1)))
(DSDeclare DSNumber n :facts ((> n 1)))
(DSDeclare BWImage a :form (array m n) :of BWPixel)
(DSDeclare BWImage b :form (array m n) :of BWPixel)

b = [(a ⊕ s)
2
 + (a ⊕ sp)

2
]

1/2
 (3b)

m and n are assumed to be user defined. The DSL type

declarations (e.g., IATemplate, BWImage, etc.) define
CLOS types that will eventually refine to C types. The
“:facts” keyword denotes a conjunction (i.e., list) of facts
pertinent to the declared item (e.g., m) and will be used to
infer, for example, that“(i==(m-1))” is false when “(i==0)” is
true. Beyond (3b), we will also need some definitions for w

of s and sp equivalent to (2) as well as for ⊕. These will be
defined later.

This DSL is the basis of the Implementation Neutral
Specification (INS) in the examples used throughout the
remainder of this document. A full description of the IA used
by DSLGen

TM
 is beyond the scope of this paper (see [28])

but a few comments are in order. The IA is much like APL
in the sense that IA specifications eschew the use of explicit
looping constructs allowing loops to be implied by IA
operators and data structures. The generator will introduce
implied loops as constraints and, through the manipulation,
combination and propagation of these constraints, will
determine the relationships between IA expressions and
loops. The initial form of the LA arises during this process.

In DSLGen

TM
, the Image Algebra is adapted to a more

utilitarian, LISP based syntax with prefix operators, without

the pretty symbols (e.g., the convolution operator ⊕ becomes
a Lisp symbol), and with the w functions in (1) becoming so-
called Method-Transforms (MT), which rewrite Abstract
Syntax Tree (AST) subtrees. MTs look superficially a bit like
object oriented methods with a pattern (i.e., the MT’s left
hand side or lhs) as the analog of a method’s parameter

sequence and a pure functional expression right hand side
(rhs) as the analog of a method’s body. MTs will be an
important component of the intermediate language (IL) by
which provisional but malleable low level definitions are
expressed. For example, w of the neighborhood sp is an MT
expressed as:

(Defcomponent w (sp #. ArrayReference ?p ?q)
 (if (or (== ?i ?ilow) (== ?j ?jlow)
 (== ?i ?ihigh) (== ?j ?jhigh)
 (tags (constraints partitionmatrixtest edge)))
 (then 0)
 (else (if (and (!= ?p 0) (!= ?q 0))
 (then ?q)
 (else (if (and (== ?p 0) (!= ?q 0))
 (then (* 2 ?q))
 (else 0))))))) (4)

where ArrayReference is the name of a shared pattern that
together with the generator variables ?p and ?q will gather
elements of the generator’s context of the convolution
operation involving the neighborhood sp. Part of this context
will come from a pixel array reference in an AST (e.g., a[i,j])
that will result in the binding of the loop index variables
(e.g., i and j) to the pattern variables ?i and ?j, the image
matrix name a to ?a and the expressions defining the upper
and lower ranges of those loop indexes to ?ihigh, ?ilow, etc.
The remainder of the lhs pattern after ArrayReference will
bind ?p and ?q to the loop index names used by the inner
convolution loops over the neighborhood designated by sp.
This generator context is the mechanism by which the
generator preserves the connection between elements of the
problem domain specification (e.g., a convolution
expression) and the constituent elements of the evolving
programming language domain implementation (e.g., the
details of the image and neighborhood loops that will
eventually implement that problem domain expression).
Thus, the problem domain knowledge is used as a meta-
knowledge context to relate high level goals (e.g., build a
convolution computation) to the low level programming
elements (e.g., loop building blocks for the image and
neighborhood loops) out of which the implementation code
will be built to achieve that high level goal.

The “tags” expression designates a property list for the
OR conditional expression, which in (4) provides the user
supplied domain knowledge that the OR expression is a
partitioning condition for this computation that will identify
edge partitions and by implication, a non-edge (i.e., center)
partition. Problem domain concepts like “edge” and “center”
play a key role in the logical architecture for the target
computation and beyond that, in imposing design pattern
frameworks onto a logical architecture. Heuristic rules based
on domain concepts are the mechanisms whereby
DSLGen

TM
 chooses a design pattern framework to introduce

PL structures and clichés (e.g., coordinated routines,
synchronization patterns and thread management clichés)
and maps the LA into the structures and clichés of that
design pattern framework.

Figure 1. Input Image a

Copyright Software Generators, LLC, 2013

The opportunity for such domain specific heuristic rules
is open ended, especially given the rich variety of possible
semantic subclasses of partitions. Different problem
examples may introduce other domain semantics. For
example, in the matrix domain, the semantic subclasses
include corners (e.g., corners are special cases in partitioning
image averaging computations); non-corner edges also used
in image averaging; upper and lower triangular matrices,
which are used in various matrix algorithms; diagonal
matrices; and so forth. By contrast, in the data structure
domain, domain subclasses include trees, left and right
subtrees, red and black nodes, etc. In general, problem
domain concepts drive program generation.

V. THE DESIGN REPRESENTATION SYSTEM AND ITS

OPERATION

The first iteration of the logical architecture for the Sobel
example is shown conceptually in Figure 3. Loop constraints
are CLOS objects that keep track of loop indexes, loop
nesting and the logical description of the loop, which
comprises logical assertions and precursors thereof that
constrain or restrict the loop in some way. For example, the
MT definition of Partestx of s is IL manufactured during
initial INS translation process that transforms an INS
expression on images into a partially translated INS
expression on pixels. Partestx of s is a precursor logical
assertion that will eventually refine to a concrete partitioning
condition for some (not yet decided upon) partition. Partestx
of s will eventually be refined to a concrete expression such
as “(i==0)” in the context of a particular partition-based
computation (e.g., Edge1). And the addition of “(i==0)” to
the loop constraint will change the form of the C code that is
eventually generated for that partition by causing the loop
over “i” to evaporate and possibly allowing the body of the
loop to be simplified. In the chosen example, the bodies of
edge loops undergo significant simplification.

Operationally, Partestx is a closure over one of the
disjuncts (e.g., (== ?i ?ilow)) in the OR expression in (4)
and the translation context bindings (e.g., ((?i i) (?ilow 0)) at
the time of Partestx formation. That translation time will be

when an expression like “(a ⊕ s)” is being translated and a
provisional loop constraint is being introduced and

propagated to the “⊕” level expression.
As loop constraints are introduced, propagated and

combined (e.g., providing loop sharing for separate
computations), DSLGen

TM
 provides machinery for recording

design decisions (e.g., discarding unneeded loop indexes) via
dynamically generated transformations that will be applied
periodically to synchronize the overall design. That is to say,
several provisional loop constraints with provisional index
names will be introduced as the generator walks over the
expression tree. Only later, as these individual loop
constraints propagate up the tree, does the generator discover
that they can be combined thereby allowing one loop to
replace two separate loops and thus, optimizing the
computation. However, residual occurrences of no longer
valid loop index names still exist in the contexts where they
were introduced. To allow this to be fixed up, the generator
dynamically creates transformations that incorporate the
design decisions (e.g., discard loop index name i1 and
replace it with i2). Later, the generator walks over the
expression tree applying these fix up transformations and
thereby synchronizes the overall expression.

The loop constraint in Fig. 3 is associated (via the “fat”
double headed arrow) with a partially translated INS
expression. Operationally, this association is effected by the
loop constraint appearing on the INS’s tags list as a property
of the INS. Generally speaking, the loop constraint may be
associated with a set of partitioning constraints such as the
Edge1, Edge2, Edge3, Edge4 and Center5 (i.e., the CLOS
objects) of this example. They indicate a partial and
provisional decomposition of the loop, where each

Figure 2. Output Image b

w
Partestx
row
col
….

Edge2

Set of Partitions

Edge4

Center5

Partially Translated INS Expression:

b [i,j]= [(a[i,j] s[i,j])
2
+ (a[i,j] sp[i,j])

2
]
1/2

Loop Constraint:
(forall (i j) { 0<= i<=(m-1), 0<=j<=(n-1), Partestx(S)}

Specializations
Of

Neighbothoods
S and SP:

S-Edge1
Sp-Edge1
S-Edge2
Sp-Edge2
S-Edge3
Sp-Edge3
S-Edge4
Sp-Edge4
S-Center5
Sp-Center5

Convolution

Neighborhoods

Intermediate

Language

Figure 3. Initial logical architecture of example

Copyright Software Generators, LLC, 2013

decomposition body eventually will be formed from a cloned
and specialized version of the associated INS expression. But
DSLGen

TM
 does not perform the decomposition yet, because

as the implementation design evolves, the partitioning is
almost certain to change before it is cast into code. The
partitioning implied by the set of partition objects is sort of a
“to do” list and a “to do” list that will likely change before it
is turned into code. However, this future cloning and
specialization will be accomplished by using a set of newly
formed specializations of s, sp and their IL. For example, the
specialization of a specific neighborhood (e.g., sp) and its IL
(e.g., w) for a specific partition constraint (e.g., edge1) is
formed by assuming a truth value for the partitioning
condition of the partition constraint and partially evaluating
the IL definitions under that assumption. For example, for
Edge1, the MT definition of w of sp, in (4), would partially
evaluate to the new MT definition, w of sp-edge1 show in
expression (5):

(Defcomponent w (sp-edge1 #.ArrayReference ?p ?q) 0) (5)

The LA is malleable so that DSLGen
TM

 can
incrementally introduce design features by a process called
Design Feature Encapsulation (DFE). DFE will revise IL
definitions, extend and reorganize partition sets and
occasionally even revise some of the DSLGen

TM
’s own

transformations that define the overall generation and
programming process (e.g., when introducing instruction
level parallelism).

To ground the LA concept a bit more in concrete reality,

Fig. 3a shows what a domain engineer who is extending or
debugging a domain model would see by using the
Architecture Browser (AB) tool of DSLGen™. It shows a
concrete example of an LA that is roughly analogous to the
conceptual version of Fig. 3. The correspondences with the
examples chosen for this article are not exact for reasons that
are not relevant to this paper. However, the neighborhood
names “SX” and “SPX” in Fig. 3a are obviously the analogs
of the names of “s” and “sp” used in the earlier examples of
this paper.

In Fig. 3a, the left hand panel of the AB shows the
architectural structure associated with (i.e., modifying) the
loop constraint Loop2d5, which is of type “loop2d”, where
Loop2d5 is the fifth loop2d instance that DSLGen™ has
generated so far. The Loop2d5 constraint is modified by a
partition set (partitionset3) that contains five partition APCs
(i.e., edge11, edge12, edge13, edge14 and center15). For the
edge11 partition, whose substructures have been opened for
examination, there are two domain variables (i.e., the sx-0-
edge11 and spx-0-edge11 neighborhoods) that are
specialized to the edge11 partition. The sx-0-edge11
neighborhood variable has been opened to reveal the
component definitions (i.e., method transforms) that have
been specialized to it. These method transforms will
eventually refine to concrete code within the target program
context that is dealing with edge11.

sx-0-edge11 and spx-0-edge11 correspond to our
conceptual example’s specialized neighborhoods s-edge1
and sp-edge1. The sx-0-edge11 and spx-0-edge11
neighborhoods have been combined because they are both

Figure 3a. Browsing the LA

Copyright Software Generators, LLC, 2013

specialized on the same partitioning condition. That is, the
generic IL forms (Partestx sx-0-edge11) and (Partestx spx-0-
edge11) will both refine to the same concrete form (e.g.,
“(== idx1 0)”).

The method transforms organized within these partition
structures (e.g., “w.sx-0-edge11.formals”) represent the
specialized components that will be used to generate code
when they are eventually inlined (i.e., in a phase named
“formals”). These components are specialize to their specific
partitions via the process describe above and illustrated for
an edge partition by formula (5). The triple dotted
transformation names identify the CLOS object that defines
the transformation. The triple dotted name parts comprise the
method or transformation name (e.g., “w”), the CLOS object
where the transformation object is stored (e.g., sx-0-edge11)
and the generator phase name for which the transform is
enabled (e.g., “formals” for MT’s). All transformations are
enabled (i.e., will be tried and can possibly fire) only during
their named phase. Thus, the overall DSLGen™ process is
defined by a list of phase names (which are user definable
and extensible) and a package of transformations for each
phase. Phases define high level generation tasks like build
scope structure, process declarations, do initial type
inference, create logical architecture, build synthetic
architecture, etc.

The right hand panel of Fig. 3a shows the key fields of
the selected partition constraint (i.e., the “center15”
partition). Interestingly enough, it reveals that the center15
partition was created by merging the center5 and center10
partitions, which arose from the two different convolution
expressions of formula (3a). Since the partitioning condition
of both will refine to the same concrete code (e.g., “(== idx1
0)”), they can be combined. The operational result of that
combination is that the two convolution computations can
share a single loop thereby avoiding two passes over the
image.

The initial logical architecture illustrated in Figs. 3 and
3a captures only those design features and structures that are
inherent to the computation specified by the user. What
remains to be determined are the elective design features that
arise because of the user’s specification of the
implementation architecture features that he or she wants to
exploit in the final implementation. The next section will
look at how the elective design features are created and
incorporated in the LA by a process of Design Feature
Encapsulation.

A. Design Feature Encapsulation

For our example, let us use an EXPS of “((PL C) Mcore
(Threads MS) (LoadLevel (SliceSize 5))).” This specifies: 1)
C is the output language, 2) the target is a multicore machine
that exploits threaded parallelism using Microsoft’s thread
library and 3) the design should decompose the computation
by slicing up some unspecified heavyweight computation
using 5 unspecified units per slice. In the example, the LA
specifics will be used to disambiguate what is being sliced up
(e.g., Center5) and what kind of units comprise a slice (e.g.,
matrix rows).

In figure 3, we have already seen a simple example of
DFE where IL definitions are specialized to specific logical
partitions of a target computation. These specializations will
cause computations along the matrix edges to simplify to a
single loop that assigns 0 to pixels of that edge. Another
simple example of DFE is mapping from IA neighborhood
style indexing to C style indexing. IA style indexing ranges
from –n to +n for a (2n+1) by (2n+1) neighborhood so that
the center pixel is at (0,0). In contrast, the C language (i.e.,
the chosen output language) arrays range from 0 to 2n. The
indexing DFE is accomplished by algebraic manipulation of
the right hand side (i.e., the MT body) of IL involving
neighborhood loop indexes, which relocates instances of
those loop indexes appropriately.

However, one of the most powerful examples of DFE is
the introduction of elective architectural design features that
alter the form and relationships within the implementation
across a broad set of coordinated routines, data structures and
possibly even parallel processes. This is accomplished by the
use of synthetic partitions, which extend the notion of natural
partitions by adding elective design feature constraints that
are implied by the EXPS.

1) Introducing Synthetic Partitions

In DSLGen
TM

, the generation process is divided into named
phases, each of which has a narrowly defined generation
purpose. The phase most relevant to the introduction of wide
ranging elective design features is the Synthetic Design
phase. During the Synthetic Design phase, the generator
introduces design features (e.g., via synthetic partitions as

Figure 4. Revised logical architecture of example

Copyright Software Generators, LLC, 2013

well as synthetic loop APCs) that will constrain the evolving
LA to be much more specific to a design for some specific
execution platform. These synthetic partitions imply
implementation structures that exploit high capability
features of the execution platform and that, when finally re-
expressed in a form closer to code, may have a global and
coordinated affect across much of the LA (e.g., via multiple
routines that coordinate the use of multicore parallel
computation). The Synthetic Design phase operates on the
logical architecture to revise and reorganize loop APCs, to
reorganize the partitions and probably (depending on the
execution platform spec) to create synthetic partitions that
are consistent with one or more design frameworks. These
design frameworks introduce the implementation level
details (e.g., thread and synchronization management as well
as low level programming clichés) to be integrated into the
evolving target program. How does the Synthetic Design
phase affect the LA of Fig. 3?

Our chosen example EXPS requires that the computation
should be load leveled (i.e., sliced into smaller computational
pieces) in anticipation of formulating the computation to run
in parallel threads on a multicore platform. Given the EXPS
requirements, Fig. 4 shows the revised logical architecture
arising from the example EXPS. The synthetic partitions are
denoted by dashed boxes. The load leveling requirement will
engender two synthetic partitions (e.g., Center5-KSegs and
Center5-ASeg) that respectively express the design feature
that assumes the center partition (i.e., Center5) is
decomposed into smaller pieces and the design feature that
implies code that will process each of those smaller pieces.

Simultaneously, in Fig. 4, the loop constraint from Fig. 3,
is reformulated into two loop constraints (i.e., Slicer and
ASlice) that will be required by the synthetic partitions
Center5-KSegs and Center5-ASeg. This synthesis process
also introduces versions of the neighborhoods S-Center5 and
SP-Center5 specialized for Center5-Ksegs and Center5-Aseg
and generates specialized the IL for each. The step size of the
Slicer loop is inferred from information in the EXPS or from
a default if the EXPS is silent on the subject. The step size is
represented by the IL expression “Rstep(S-Center5-Ksegs)”
in Fig. 4. For the example, we have chosen a step size of 5.
Using this step size (with an inferred dimension of “rows”),
the code engendered by Slicer will dynamically compute a
new range for each instance of the ASlice loop. Thus, the
Aslice loop in the first thread will have a range of
[0,min(4,(m-1))], the second [5, min(9,(m-1))] , the third [10,
min(14,(m-1))] and so forth.

2) Cloning and Specialization

At this point, DSLGen™ is ready to create explicit
instances of the separate computation cases so that those
cases can be moved to the correct places in the emerging
global design architecture. This is accomplished by creating
clones of the APCs that are specialized to the various
partitions (i.e., cases). Fig. 5 illustrates the specialized clones
that will be created from the synthetic logical architecture of
Fig.4. These clones will supply the design features specific
to the essence of the computation (e.g., specs for loops and
for computational steps). They will be combined with a

design framework that will supply the overall architecture
and design features specific to the elective requirements of
the computation implementation (e.g., patterns of
cooperative routines, pattern of synchronization and even
low level program code supporting both). More specifically,
the clones will be used to fill in holes (i.e., undetermined
parts) of the PL based design framework.

A design framework is roughly a formalization of the
“gang of four’s” notion of a design pattern [19]. It is
basically a large scale skeletal code pattern (e.g., a pattern of
coordinated routines) with holes that expect certain kinds of
LA elements. For example, some holes will expect loop
APCs associated with some version of the INS that is
specialized for lightweight computations (e.g., image edge
loops shown in Fig. 5 as callout 5-05 and their respective
INS clones shown as callout 5-03). Others will expect a loop
APC with a version of the INS specialized to heavyweight
computations (e.g., a slice of an image center, which is
shown as callout 5-10) and its corresponding loop APC (e.g.,
Aslice shown as callout 5-02). Yet others (for this specific
example) may expect synthetic APCs that are tailored to
elective design features such as a loop that slices up the data
structure associated with the heavyweight computation (e.g.,
a loop like Slicer in Figs. 4 and 5, where Slicer is shown as
callout 5-01). The process of combining the clones of Fig. 5
with a design framework is described in some detail in the
next section.

3) Merging Design Patterns with a Logical Architecture

At this point, DSLGen
TM

 is ready to add in the PL level
details (e.g., a pattern of interrelated routines, parametric
plumbing, thread management clichés and protocols of
specific thread libraries) by mapping the LA into a PA
through use of a design pattern framework. DSLGen

TM

allows for a library of design pattern based frameworks (i.e.,
objects with associated PL-like skeletons), each of which
represents some reasonably small combination of related
elective design features. Additionally, each such framework
has a set of holes containing protocol expressions (indicated
by embolden designators) that specify elements of the LA
that should be substituted for the protocol expressions. The
specific design framework chosen by DSLGen™ is
determined by the LA’s combination of architectural features
as well as problem domain properties of the target
computation. For example, the convolution operations in the
problem domain specification of our example (i.e.,
expression (3a)) reveal that each output pixel computation is
independent of other output pixel computations, which is a
requirement of the chosen design framework. Such a
property can be determined by examining only the types and
structure of the domain specific expressions. If there had
been some interdependencies among separate pixel
computations, it would have changed both the course of the
synthetic design process and the possible design
framework(s) that could apply. In such a case, the whole
structure of the design framework would have been different
and in particular, the patterns of synchronization would have
been different.

Copyright Software Generators, LLC, 2013

The holes in the design framework are designed to
receive computational payloads from the LA (e.g., partition
specific computations). For example, a particular framework
might be designed to receive partitions such as image edges
that are “probably” order n computations (i.e., lightweight
computations) as well as to receive partitions such as image
centers that are “probably” order n squared computations
(i.e., heavyweight computations). Such a framework might
introduce a set of cooperating PL routines and the parametric
plumbing among those routines, where the plumbing may
include some “holes” that will receive data items specific to
the INS. There may be additional PL design features
included, such as synchronization patterns for parallel
computation and detailed thread control clichés. But the
framework is agnostic about its payload. It says nothing
about exactly what kind of a computation is occurring in its
holes. That computational payload information will be
supplied by the logical architecture.

So, based on the example LA plus specific features
required by the EXPS, DSLGen

TM
 will search its design

pattern data base for a design pattern meeting these criteria.
It finds one with the following skeletal PL framework:

void ?managethreads ()
 { HANDLE threadPtrs[200];
 HANDLE handle;
 /* Launch the thread for lightweight processes. */
 handle = (HANDLE)_beginthread(
 &?DoOrderNCases , 0, (void*) 0);
 DuplicateHandle(GetCurrentProcess(), handle,
 GetCurrentProcess(),&threadPtrs[0],
 0, FALSE, DUPLICATE_SAME_ACCESS);
 /* Launch the threads for the slices of heavyweight
 processes. */
 {handle = (HANDLE)_beginthread(& ?DoASlice , 0,
 (int) (Idex ?SlicerConstraint)) ;

 DuplicateHandle(GetCurrentProcess(), handle,
 GetCurrentProcess(),&threadPtrs[tc],

 0, FALSE, DUPLICATE_SAME_ACCESS);
 tc++; } (tags (constaints ?SlicerConstraint))
 long result = WaitForMultipleObjects(tc, threadPtrs,
 true, INFINITE); } (6)

void ?DoASlice (int (Idex ?SlicerConstraint))
 {{ ?ins } (tags (constraints ?ASliceConstraint))
 _endthread(); } (7)

 void ?DoOrderNCases ()
 {?OrderNCases
 _endthread(); } (8)

Figure 5. Specialized Clones

Copyright Software Generators, LLC, 2013

Associated with the class of this design pattern is a
CLOS method whose job is to find key elements in the LA
and bind them to pattern variables (e.g., ?ins and
?SlicerConstraint); invent and bind unique names for
routines (e.g., “SobelCenter8” might be invented for
?managethreads); clone and specialize the INS to specific
partitions (e.g., by substituting sp-Edge1 for sp); and
instantiate the skeletons with the bindings. Notice that the
design skeletons are agnostic as to what their computational
payload is going to be. Further, there are no PL like
connections (e.g., calls to PL routines) between the design
pattern skeletons and anything in the LA. The only
requirements of the design pattern are that the LA has
partitions that represent lightweight processes that can be
batched in a single thread (e.g., edges) and a heavyweight
process (e.g., a center) that is partitioned into a slicer
partition and an implied set of slicee partitions. These
requirements are determined by domain logic, that is, logical
rules operating on problem domain information (e.g.,
properties of edges) rather than PL information.

Space limitations preclude showing the full step by step
expansion of all these skeletal routines but the thread routine
that batches the edge partitions (?DoOrderNCases) is
reasonably short and is interesting in that the edge loops will
drastically simplify when in-lined and partially evaluated.
Instantiating with cloning and specialization produces:

void SobelEdges9()
 { /* Edge1 partitioning condition is (i=0) */
 {for (int j=0; j<=(n-1);++j)

 b [0,j]= [(a[0,j] ⊕ s-edge1[0,j])
2
 +

 (a[0,j] ⊕ sp-edge1[0,j])
2
]

1/2
}

 /* Edge2 partitioning condition is (j=0) */
 {for (int i=0; i<=(m-1);++i)

 b [i,0]= [(a[i,0] ⊕ s-edge2[i,0])
2
 +

 (a[i,0] ⊕ sp-edge2[i,0])
2
]

1/2
}

 /* Edge3 partitioning condition is (i=(m-1)) */
 {for (int j=0; j<=(n-1);++j)

 b [(m-1),j]= [(a[(m-1),j] ⊕ s-edge3[(m-1),j])
2
 +

 (a[(m-1),j] ⊕ sp-edge3[(m-1),j])
2
]

1/2
}

 /* Edge4 partitioning condition is (i=(n-1)) */
 {for (int i=0; i<=(m-1);++i)

 b [i, (n-1)]= [(a[i, (n-1)] ⊕ s-edge4[i, (n-1)])
2
 +

 (a[i, (n-1)] ⊕ sp-edge4[i, (n-1)])
2
]

1/2
}

 _endthread(); } (9)

Notice that in expression (9), partial evaluation plus

inference has caused one of each pair of the edge loops in (9)
to evaporate and the edge index max or min values (e.g., 0 or
(m-1)) to appear in one of the index positions in the array
expressions. In the implementation, these loop refinements
occur concurrently with the inlining of the IL definitions (see
the following section) but in the name of simplicity, showing
it here shortens (9) and makes it easier for the reader to
understand.

While the expansion of the ?DoASlice routine is longer
than SobelEdges9, it is important because is shows the

default partition specialization (i.e., the center slice
partition). It is populated with the Aslice loop constraint plus
the INS specialized to S-Center5-ASeg and SP-Center5-
ASeg. The example code is shown with a slice size of 5 but
alternatively, it could be declared by the user to be a
parameter. Before inlining the IL definitions, the ?DoASlice
routine is specialized to:

void SobelCenterSlice10 (int h)

 {

 for (int i=h; i< =min((h+ 4),(m-1)); ++i)

 {for (int j=1; j<=(n-2); ++j)

 {b [i,j]= [(a[i,j] ⊕ s-center5-Aseg[i,j])
2
 +

 (a[i,j] ⊕ sp-center5-ASeg[i,j])
2
]

1/2
 } }

 _endthread(); } (10)

Like (9), form (10) shows the loop refinements out of

order to save space and make (10) easier to understand. The
range of j is now [1,(n-2)] rather than [0,(n-1)] because of the
effect of the partitioning condition.

4) Inlining Intermediate Language Definitions

The DSLGen
TM

 Inlining phase will inline the IL
definitions, replacing the convolution expressions with their
definitions such as that of the convolution operator, i.e.,

(* (a[(row sp-Edge1 a[i,j] p q), (col sp-Edge1 a[i,j] p q)])
 (w sp-Edge1 a[i,j] p q))

2
 (11)

for each partition specific INS clone. The inlining will
continue recursively for the lower level IL definitions, e.g.,
row, col and w (where row and col map from neighborhood
coordinates to matrix coordinates). Since (w sp-Edge1 a[i,j]
p q) is defined as 0 in (5), expression (11) partially evaluates
to 0. Similarly, all other convolution expressions involving
edges partially evaluate to 0. After all of the inlining and
partial evaluation (but before adding local declarations),
expression (9) becomes expression (12):

void Sobel Edges9()
 { /* Edge1 partitioning condition is (i=0) */
 {for (int j=0; j<=(n-1);++j) b [0,j]=0;}
 /* Edge2 partitioning condition is (j=0) */
 {for (int i=0; i<=(m-1);++i) b [i,0]= b [0,j]=0;}
 /* Edge3 partitioning condition is (i=(m-1)) */
 {for (int j=0; j<=(n-1);++j) b [(m-1),j]=0;}
 /* Edge4 partitioning condition is (i=(n-1)) */
 {for (int i=0; i<=(m-1);++i) b [i, (n-1)]= 0;}
 _endthread(); } (12)

And analogously for the ?DoASlice routine, after a series

of inlining steps analogous to the Edge1 partition refinement
process but without the extensive simplification engendered
by the IL definitions for the edge partitions, the center slice
partition case (10) refines into:

Copyright Software Generators, LLC, 2013

void SobelCenterSlice10 (int h)

{long ANS45; long ANS46;
 /* Center5-KSegs partitioning condition is
 (and (not (i=0)) (not (j=0)) (not (i=(m-1)))
 (not (j=(n-1)))) */
 /* Center5-ASeg partitioning condition is
 (and (not (i=0)) (not (j=0)) (not (i=(m-1)))
 (not (j=(n-1))) (h<=i)(i<=(min (h+4),(m-1))))*/
 for (int i=h; i<min((h+ 4),(m-1)); ++i) {
 for (int j=1; j<=(n-2); ++j) {
 ANS45 = 0;
 ANS46 = 0;
 for (int p=0; p<=2; ++p) {
 for (int q=0; q<=2; ++q) {

 ANS45 +=
 (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))*
 ((((p - 1) != 0) && ((q - 1) != 0)) ? (p - 1):

 ((((p - 1) != 0) && ((q - 1) == 0)) ?
 (2 * (p - 1)): 0)));
 ANS46 +=
 (((*((*(b + ((i + (p + -1))))) + (j + (q + -1)))))*

 ((((p - 1) != 0) && ((q - 1) != 0)) ? (q - 1):
 ((((p - 1) == 0) && ((q - 1) != 0)) ?

 (2 * (q - 1)): 0))); }}
 int i1 = ISQRT ((pow ((ANS46), 2) +

 pow ((ANS45), 2)));
 i1 = (i1 < 0) ? 0 : ((i1 > 0xFFFF) ? 0xFFFF : i1);
 ((*((*(A + (i))) + j))) = (BWPIXEL) i1; }}
 _endthread(); } (13)

The examples are adapted from generated code to

accommodate the format and space available. For example,
in generated code, i and j would be generated names like
idx3 and idx4. Similarly, p and q would be something like
p15 and q16. Additionally, in (13), a discussion of the
introduction of the answer variables (e.g., ANS45) and the
masking expression near the end is beyond the scope of this
paper.

The reader will note that the inlining step has introduced
some common sub-expressions (e.g., (p - 1)) which will
degrade the overall performance if not removed. If this code
is targeted to a good optimizing compiler, these common
sub-expressions will be removed by that compiler and
thereby the performance improved. However, if the target
compiler is not able to perform this task, DSLGen

TM
 offers

the option of having the generator system remove the
common sub-expressions and this can be easily added to the
specification of the execution platform. However, the
common sub-expressions are explicitly included in this
example (i.e., not optimized away) to make the connection to
the structures of the MTs used by the INS more obvious to
the reader. The broad structure of the right hand operand of
the times (*) operator in the right hand side of the
assignments to the answer variables ANS45 and ANS46 is
structurally the same as that of the W method transform
specialized to the center partition for SP and S. That is, the
right hand side of ANS46 is the C form:

((((*((*(b + ((i + (p + -1))))) + (j + (q + -1))))) *

 ((((p - 1) != 0) && ((q - 1) != 0)) ? (q - 1):

 ((((p - 1) == 0) && ((q - 1) != 0)) ? (2 * (q - 1)): 0))) (14)

It mimics the form of the MT definition for w of SP-Center5
because (14) is derived by inlining that MT definition and
eventually processing it into legal C. For reference, the rhs
of the MT definition of w of SP-Center5 has the form

(if (and (!= ?p 0) (!= ?q 0))

 (then ?q)

 (else (if (and (== ?p 0) (!= ?q 0))

 (then (* 2 ?q))

 (else 0)))). (15)

When the inlining occurs, the SP-Center5 generator

pattern variable ?p is bound to “(p - 1)” and ?q is bound to
“(q - 1)”. The “- 1” part of these values arise because of the
C indexing design feature encapsulated earlier in the
generation process. Recall that that design feature maps the
domain language indexing system for neighborhoods (i.e.,
[-n, +n]) to a C language style of indexing (i.e., [0, 2n]).

VI. THE DSLGEN
TM

 PROTOTYPE

DSLGen
TM

 is the culmination of a multi-year R&D effort
and comprises about 52KLOC of CommonLisp and CLOS
running on Franz Allegro, version 8.2. A key component of
the architecture upon which many of the other components
are built is a general pattern matching system with
backtracking, which is built using continuations. Built on
top of the pattern matcher is a transformation system that
includes several flavors of transformations (e.g., general,
MTs, generic components, and deferred, where deferred
transformations are used to move newly created subtrees up
the abstract syntax tree). The transformations are specific to
a specific generator phase (i.e., they are only enabled during
the named generator phases to which they apply, e.g., the
SyntheticDesign phase).

The partial evaluator and several specialized inference
subsystems are also heavy users of the pattern matcher. The
inference systems include a type inference system, a
backchaining rule system, a logical expression simplifier
based on logical subsumption and an inequality inference
engine based on Fourier-Motzkin elimination. The inequality
inference engine is used for inferring relationships among
logical architecture elements (e.g., inferring that (i == (m -
1)) is false when (i == 0) and (m>1) are true) .

As to generation performance, a Sobel example on RGB
images with partitioning but without load leveling or threads
takes about 75 seconds to generate an Abstract Syntax Tree
(AST) for C (or 40 to 50 seconds if not generating history
and traces). Adding in the surface syntax to generate the text-
based C files adds an additional 15 to 20 seconds. Adding
multicore with threads, SIMD (Single Instruction, Multiple
Data) instructions and various other architectural
complexities increases generation times by small amounts.

Copyright Software Generators, LLC, 2013

VII. PERFORMANCE TESTING

Generated code was tested with a selection of
implementation variations on a 4 core, 3.33 GHz Velocity
brand computer with 12 GB of real and 24 GB of virtual
memory. The test computer is built on the Intel i7 CPU with
Turbo mode, which allows overclocking when the CPU is
running under maximum temperature and power
specification. It has 8 virtual processors. The code was
compiled with Microsoft’s Visual Studio 2008 C/C++
compiler.

The test data was a 215 by 215 pixel image in RGB
format with a 24 bit pixel depth. The chosen computations
included Sobel and Wallis edge detection methods [28] since
they put a greater computational load on the machine than
other possible computations might. In addition, Sobel
provides one of the more serious challenges to the generator
in that it requires use of virtually all of the generation
facilities. The testing also included image Average and
Unsharp Mask [28] (often used to sharpen Mammogram
images), both of which have lighter computational loads.

Figure 6. Performance vs. thread count

Figure 6 shows the results for various computations
decomposed into threads to be run in parallel. These tests
were run 10,000 times per image. For Sobel, the best
performance was achieved at 55 threads, which required
approximately 20.3 seconds to run the full set, or about 2
milliseconds per image. The worst results were with two
threads, one for the edge cases and one for the center, which
required approximately 105 seconds for the 10,000 images or
a bit over a 10 millisecond per image. This was roughly the
same time required for the calibration case, a hand coded
version compiled to use no parallelism of any kind. Notice
that the time drops quickly with five threads (i.e., one for the
edges and four for the image center), taking about 32.8
seconds for the full set of images or about 3.3 milliseconds
per image. This is about what simple logic would expect
with four cores. However, the time continues to improve
modestly for each five or so additional threads until it begins
to level out at about 20.5 seconds at about 23 threads.
Thereafter, the improvement is a tenth of a second or so for
five or so additional threads. It is somewhat counter intuitive
that one should get any improvement at all after the image
has been evenly decomposed over the four cores. It is not

entirely clear why this occurs but our current hypothesis is
that it may be the “GPU effect” where many threads can
mask memory, cache or other kind of latency if thread
switching is efficient enough. Also, fast thread switching
among virtual processors in the hardware (called
Hyperthreading) may play a role. The target computer has
two virtual processors per core and this is known to increase
overall performance in many cases.

Other test cases with different kinds of image processing
functions show similar behavior although the computational
loads vary based on the nature of the computation. Sobel and
Wallis have computational heavy loads that just simply
require hefty computational capacity. Sobel employs square
roots and Wallis uses logarithms. On the other hand,
Average and Unsharp Mask are both light weight
computations that employ little more than addition and
division. Hence, they require less computational capacity as
is clear from the graph.

With the addition of SIMD instructions (Fig. 7), the
added improvement for Sobel ranges from about a 14%
improvement for few or no threads to 36% for the maximum
number of threads tested. With only two threads, Sobel took
87.2 seconds for all 10K images or 8.7 milliseconds per
image, whereas with 55 threads, it took 12.87 seconds for all
10K images or about 1.3 milliseconds per image.

Interestingly, the SIMD effect with threads for Image
Average was significant and somewhat surprising – between
57% and 58% improvement regardless of the number of
threads. What this suggests is that virtually all of the
computation for Image Average can be done with instruction
level parallelism (i.e., addition of a vector of numbers)
leaving only a single additional arithmetic operation (i.e.,
multiplication or division by a constant) to be done via the
standard arithmetic unit. So, the multicore parallelism
improvement is a much flatter curve. Once one runs out of
processors there is little additional effect although there may
be some additional effect depending on the structure of the
computation and its possible effect of processor latencies.
Recall the comments from the previous discussion about the
counter intuitive improvement for Sobel beyond 5 or so
threads.

Figure 7. Threads and SIMD

Copyright Software Generators, LLC, 2013

By contrast, a much smaller amount of the Sobel
computation is done in parallel instructions (i.e., the
PMADD operation on the three weight vectors and the three
corresponding pixel vectors, where each of the vectors is
only three numbers long) whereas the addition of the
intermediate instructions (via the PADD instruction) is
relatively inconsequential. But more importantly, the square,
addition and square root operations that follow the SIMD
instructions will be done on the standard CPU arithmetic
unit. These last three operations (and especially the square
root operation) are likely to be the lion’s portion of the
computation. Therefore, the really big improvement with
Sobel arises because of the large scale parallelism provided
by the thread based parallelism and this tends to swamp
much of the savings of the instruction level parallelism of the
SIMD instructions.

VIII. RELATED RESEARCH

A key difference between most previous research and
DSLGen

TM
 is that DSLGen

TM
 starts working strictly in the

problem domain and programming process domain rather
than the PL domain. Virtually all previous research chooses
representation systems that are based to some degree upon
PL constructs or abstractions thereof. This includes
compiling technology, generator technology [4] [5] [7] [22]
[29] [30], computer aided software engineering (CASE) [13],
model driven engineering [22], Aspect Oriented
Programming (AOP) [17], Anticipatory Optimization
Generation (AOG) [6] [7], general optimization based
methods [1] [20] [16], parallel or specialty programming
languages [8] [12], programming languages superficially
similar to DSLGen

TM
‘s partitioning model [14],

programming language augmentation systems [15] [27],
maintenance support systems [1] [2], refactoring [18] and
other related technology and methods for creating
implementation code from a specification of a computation.
The PL based representational choice forces conventional
generation technologies to introduce design and PL forms,
implementation structures, organizational commitments and
other execution platform based details too early and thereby
make design decisions about the architecture of the solution
that will prevent other desired design decisions from being
made later. Or at least, it will make those other desired
design decisions require revision of the model or design,
which is very often difficult to automate within a PL oriented
domain.

In general, there are two important properties that
differentiate these various approaches from DSLGen

TM
: 1)

The specifications of the computations in these approaches
are typically not invariant over all or even a variety of
execution platform architectures, and 2) target program
implementations exploiting specific high capability features
cannot be fully and automatically generated without
compromising the invariance property. That is, user action is
required either to revise the computational specification
model to fit the new execution platform or to extend an
overly abstract and therefore incomplete input specification
to target a specific execution platform. Generation of target
program implementations for a variety of execution

platforms that exploit the execution platform features (e.g.,
multicore parallelism, vector instructions, etc.) requires
human redesign or reprogramming in one form or another.
For example, in these approaches, the transition from one
execution architecture (e.g., simple Von Neumann) to
another (e.g., multicore and/or vector machines) requires
user action to adapt the computation specification or model
to the new execution architecture.

In many cases, these conventional technologies often
force a top down, reductionist approach to design where the
top level programming structure and the essence of its
algorithm are expressed first and then the constituent essence
is recursively extended step by step until the lowest level of
PL details are expressed. However, that initial structure may
be incompatible with some desired design requirements or
features that are addressed later in the development or
generation process. The initial design may have to be
reorganized to introduce such design requirements or
features. For example, the requirement to fully exploit a
multicore computer requires a significant, difficult and many
step reorganization to fully exploit the performance
improvements possible with multicore. Automation of such
reorganizations at the programming language level is
seriously complicated and except for relatively simple cases
is prone to failure. This is why compilers that can compile
programs written and optimized for one execution platform
are often unable to satisfactorily compile the same programs
for a different execution platform with an architecture that
employs a significantly different model for high capability
execution and fully exploit the high capability features of the
new architecture. For example, programs written for the pre-
2000 era Intel platforms are largely unable to be
automatically translated to fully exploit the multicore
parallelism of the more recent Intel platforms. Human based
reprogramming is almost always necessary to fully exploit
the multicore parallelism.

While much research has been highly PL oriented, some
research is clearly working in the problem domain. A prime
example is the work of Jim Neighbors, who introduced the
idea of using domain specific information in program
generation. [24] [25] [26] His approach is to map from
purely problem domain oriented languages through a series
of language to language mappings, incrementally evolving to
pure programming language representations. While
DSLGen

TM
 is consistent with that spirit, the underlying

machinery (e.g., the non-reductionist design approach, the
non-PL logical architecture model, the APCs, the
incremental design feature encapsulation and the incremental
addition of sets of PL features phase by phase) distinguishes
the DSLGen

TM
 approach from Neighbor’s work.

Nevertheless, Neighbors’ work has made significant
contributions to program generation from which this work
has benefited.

IX. CONTRIBUTIONS

The contributions of this work are due in large part to the
fact that this work breaks with convention in a number of
ways. Perhaps the most important break is avoiding the PL
domain in the initial modeling process. This allows the

Copyright Software Generators, LLC, 2013

implementation neutrality of the INS and allows the
separation of the INS from the specification of the
execution platform (EXPS) while still allowing the
generated programs to exploit the full range of high
capability features of the EXPS platform. While some
systems emphasize language neutrality [30] rather than
implementation neutrality, their specifications clearly derive
from the PL domain and they therefore inherit the liabilities
of the PL domain.

The ability of DSLGen
TM

 to exploit high capability
features arises from another important contribution,
specifically, the design representation system based on
associative programming constraints. The design
representation system allows the initial and early stage
designs to be organized as logical architectures thereby
allowing the system to operate in the problem and
programming process domains and to introduce PL
constructions and assumptions incrementally. Operating with
problem domain concepts such as edge and center partitions
allows DSLGen

TM
 to begin to manipulate and extend the LA

without (initially) being restricted by the constraints inherent
to programming languages.

Organizing the IL definitions as provisional
transformations that are malleable provides the opportunity
for incrementally adding design features by using higher
order transformations to revise the IL definitions to
incorporate those features but still defer casting them into
programming language constructs until late in the generation
process. Thus, the IL becomes the stand-in or precursor
representation for the code details that have yet to be
concretely determined. For example, expressions like
Partestx(sp) can stand-in for code or meta-information (e.g.,
assertions) that cannot be refined to concrete form until the
implementation context (e.g., a specific partition) and locale
(i.e., the location in the AST) are concretely and finally
determined. And when that context is eventually pinned
down (e.g., to Edge1), Partestx(sp) can be specialized (e.g.,
to Partestx(sp-Edge1)), which will move it a step closer to
refinement into a concrete logical expression.

DSLGen
TM

 relies heavily on inference and implication.
For example, the APCs are described by a set of logical
assertions that are augmented as the design progresses. This
allows architectural features and programming clichés to
be expressed inferentially rather than structurally and
proscriptively. This defers making PL level design
decisions. These PL representational forms are hard to
revise, change and manipulate. For example, in DSLGen

TM
,

adding messy design details and programming clichés can be
deferred until the broad architectural structure is settled.

In summary, DSLGen
TM

 represents a fundamentally new
paradigm for program generation.

X. ACKNOWLEDGMENTS

I want to thank two contributors who have been helping
with the commercialization of DSLGen

TM
 – Mitch Lubars

and Rob Pettengill. Mitch did the performance testing and
implemented the Fourier-Motzkin based inference engine.
Additionally, Mitch wrote a prototype of a Slicer/Slicee
target program from which the author abstracted the

Slicer/Slicee design pattern used to support one class of
synthetic partitions. Rob built a search and bookmarking
facility for the transformation history debugger.
Additionally, both Mitch and Rob read an early version of
this paper and provided many comments and suggestions
that improved it.

References

[1] Robert L. Akers, Ira D. Baxter, Michael Mehlich, Brian J. Ellis, and
Kenn R. Luecke, “Case study: Re-engineering C++ component
models via automatic program transformation,” Information and
Software Technology 49, 2007, pp. 275-291.

[2] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich, “DMS®:
Program Transformations for practical scalable software evolution,”
International Conference of Software Engineering, May 2004, pp. 10.

[3] David F. Bacon, Susan L. Graham, and Oliver J. Sharp, “Compiler
transformations for high-performance computing,” ACM Surveys,
Vol. 26, No. 4, December, 1994, pp. 345-420.

[4] Don Batory, Vivek Singhal, Marty Sirkin, and Jeff Thomas, “Scalable
software libraries,” Symposium on the Foundations of Software
Engineering. Los Angeles, California, 1993, pp. 191-199.

[5] Ted J. Biggerstaff, “A perspective of generative reuse, annals of
software engineering,” Baltzer Science Publishers, AE Bussum, The
Netherlands, 1998, pp.169-226.

[6] Ted J. Biggerstaff, “Fixing some transformation problems”
Automated Software Engineering Conference, Cocoa Beach, Florida,
1999, pp. 10.

[7] Ted J. Biggerstaff, “A new architecture of transformation-based
generators,” IEEE Transactions on Software Engineering, Vol. 30,
No. 12, Dec., 2004, 1036-1054.

[8] Ted J. Biggerstaff, “Automated partitioning of a computation for
parallel or other high capability architecture,” Patent no. 8,060,857,
United States Patent and Trademark Office, filed January 31, 2009,
issued November 15, 2011.

[9] Ted J. Biggerstaff, “Non-localized constraints for automated program
generation,” United States Patent and Trademark Office, Patent no.
8,225,277, filed April 25, 2010, issued July 17, 2012.

[10] Ted J. Biggerstaff, “Synthetic partitioning for imposing
implementation design patterns onto logical architectures of
compuatations,” United States Patent and Trademark Office, Patent
no. 8,327,321, filed August 27, 2011, issued Dec. 4, 2012.

[11] Guy E.Blelloch, Jonathan C.Hardwick, Siddhartha Chatterjee, Jay
Sipelstein, and Marco Zagha, “Implementation of a portable nested
data-parallel language,” in Proceedings of PPOPP '93 Proceedings of
the fourth ACM SIGPLAN symposium on Principles and practice of
parallel programming, 1993, 102-111

[12] Guy Blelloch, “Programming parallel algorithms,” Communications
of the ACM, 39 (3), March, 1996, pp. 85-97.

[13] CASE Tools, See http://en.wikipedia.org/wiki/Rational_Rose .

[14] Bradford L. Chamberlain, Choi, Sung-Eun, Deitz, Steven J. and
Snyder, Lawrence, “The high-level parallel language ZPL improves
productivity and performance,” Proceedings of the IEEE International
Workshop on Productivity and Performance in High-End Computing,
2004, pp. 1-10.

[15] Barbara Chapman, Gabriele Jost and Ruud Van Der Pas, Using
OpenMP, MIT Press, 2008.

[16] Daniel E.Cooke, J. Nelson Rushton, Brad Nemanich, Robert
G.Watson, and Per Andersen, “Normalize, transpose, and distribute:
an automatic approach to handling nonscalars,” ACM Transactions
on Programming Languages and Systems, Vol. 30, No. 2, 2008, pp.
49.

[17] Tzilla Elrad, Robert E. Filman and Atef Bader, “Aspect-oriented
programming,” Communications of the ACM, Vol. 44, No. 10, 2001,
pp. 29-32.

Copyright Software Generators, LLC, 2013

[18] Martin Fowler, Kent Beck, John Brant and William Opdyke,
“Improving the design of existing code by refactoring,” Addison-
Wesley, 2000, pp 431.

[19] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
Design Patterns, Addison Wesley, 1995.

[20] M. W. Hall, S. P.Amarasinghe, B. R.Murphy, S. W.Liao, and M.
S.Lam, “Interprocedural parallelization analysis in SUIF,” ACM
Transactions on Programming Languages and Systems, Vol. 27, No.
4, July, 2005, pp. 662-731.

[21] Neil D.Jones, “An introduction to partial evaluation,” ACM
Computing Surveys, Vol. 28, No. 3, 1996, pp. 480-503.

[22] Steve Macdonald, Kai Tan, Jonathan Schaeffer, and Duane Szafron,
“Deferring design pattern decisions and automating structural pattern
changes using a design-pattern-based programming system,” ACM
Transactions on Programming Languages and Systems, Vol 31, No.
3, April, 2009.

[23] Model Driven Engineering. See http://en.wikipedia.org/wiki/Model-
driven_engineering .

[24] James M. Neighbors, “The Draco approach to constructing software
from reusable components,” IEEE Transactions on Software
Engineering, SE-10 (5), (Sept. 1984) pp 564-573.

[25] James M. Neighbors, “Draco: a method for engineering reusable
software systems,” In: Ted Biggerstaff and Alan Perlis (eds.):
Software Reusability, Addison-Wesley/ACM Press (1989), pp. 295-
319

[26] James M. Neighbors, see http://www.bayfronttechnologies.com/.

[27] OpenMP Architecture Review Board, “OpenMP Application Program
Interface,” Version 3.0, May 2008.

[28] Gerhard X. Ritter and Joseph N. Wilson, The Handbook of Computer
Vision Algorithms in Image Algebra, CRC Press, 1996.

[29] Kai Tan, Duane Szafron, Jonathan Schaeffer, John Anvik And Steve
Macdonald, “Using generative design patterns to generate parallel
code for a distributed memory environment,” Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of parallel
programming, June, 2003, pp. 203-215.

[30] Satnam Singh, “Computing without processors,” CACM, Sept. 2011,
pp. 46-54.

[31] Unified Modeling Language. See
http://en.wikipedia.org/wiki/Unified_Modeling_Language.

