

Fixing Some Transformation Problems1

Ted J. Biggerstaff
Email: Ted_Biggerstaff@msn.com

1 Much of this work was done at Microsoft Research and the author would like to acknowledge the support of Microsoft.

ABSTRACT
Defining domain specific abstractions for generator
systems leads to a quandary between choosing abstractions
that exhibit powerful programming amplification through
the combinatorial opportunities provided by composition,
and choosing abstractions that can be easily transformed
into high performance code. Most generators opt for
abstraction to improve programming productivity, which
usually compromises target program performance.
Transformation-based generators widen the quandary
through deep factorization of operators and operands to
amplify expressive power, but this explodes the search
space. My hypothesis is that existing architectures are
inadequate to achieve simultaneously high levels of
abstraction, high performance target programs and small
solution search spaces. To explore architectural variations
to address this quandary, I have implemented a generator
in Common LISP designed specifically to address these
problems. It is called the Anticipatory Optimization
Generator (AOG) because it allows programmers to
anticipate optimization opportunities and to prepare an
abstract, distributed plan that attempts to achieve them.

Keywords

Domain specific, program generation, transformations,
logic programming, pattern-directed, tag-directed

1 PROBLEMS

Program generators compile high level, compact, (and
usually domain specific) languages into conventional
programming languages like C or Java thereby improving
programming productivity, code safety, ease of
understanding, and so forth. The same properties that make
such domain specific language (DSL) representations
appealing make compiling them into high performance
code difficult. The performance problems arise because
DSLs tend to delocalize performance-related elements of
the target code and introduce high levels of redundancy.
The various approaches to re-localize (i.e., reorganize) the
code and remove redundancy to achieve high degrees of
optimization (e.g., approaches like conventional
optimization, optimizing transformations, specialization,
etc.) all have practical problems that call into question their
feasibility. The fundamental problem is that dependencies
between distant uses of operators and operands make re-
localization and redundancy removal hard. When

attempting to reorganize components for near optimum
performance, the architectures of conventional
transformation systems induce very large search spaces.
Therefore, commercial transformation systems that must
deal with large programs rely on forward refinement as
their fundamental mode of operation and forego significant
program reorganization and optimization. For example,
CAPE, a generator built on Draco [8] and specialized to
communications problems, exploits few or no optimization
transformations and relies on the problem domain to allow
solutions that are acceptable with limited or no
optimization. In fact, Neighbors asserts that often he either
ignores optimizations completely and depends on default
forward refinement transformations or he uses the
programmer as an oracle to guide the generator through the
myriad choices of optimizing transforms.

The problems of conventional transformation systems
are inherent to their architectures. In this paper, we will
explore the architectural characteristics that lead to these
large search spaces and explore how their architecture can
be changed to overcome these problems.

2 PROBLEMS INDUCED BY ARCHITECTURE

Scale-Variation-Performance-Search Space
Dilemma: The fundamental problem is that transformation-
based generators are trying to achieve four mutually
antagonistic goals. They want to use big building blocks or
equivalently high degrees of composition (i.e., scale) to
achieve high programming leverage. They also want to
provide high degrees of variation in the target program so
that the resulting programs will be widely applicable.
Finally, they want to produce programs with sufficiently
good performance to be practical in the real world without
engendering huge solution search spaces. These goals are
mutually antagonistic.

Using big components impedes the variation goal
because the combinatorial explosion of pre-coordinated
design decisions for big components explodes the number
of variants needed. Using small components and
composition both nullifies the programming leverage
achieved and explodes the search space induced by
composing and organizing them for acceptable
performance. Performance is a global property of a
program that relies on coordinated design of the
componentry from which the program is assembled. Such

coordination limits the degree of variation that is possible.

As a practical matter, compromises of one or more of
these goals are the usual approach with the consequences
being that the results are often not satisfactory to the user.

Fundamentally, this dilemma arises from the goal to
build universal canonical components that can be used
everywhere and the fact that universal canonical
components are often ill-tuned to work with other universal
components. Tuning such components so that they work
well together (e.g., have acceptable performance) is a
process of revising the structure of each component to
impose inter-component coordination such that certain
desired global properties are achieved. Such tuning is hard
and often induces impracticably large search spaces. In the
example we will examine, this tuning process would
involve a chain of 92 carefully ordered transformations
where at each point in the chain, many other legal
transformations are possible. But if different
transformations are applied, the process is likely to dead-
end in a local minimum and never achieve the full
performance potential. It is a bit like the requirement to
have 92 carefully ordered miracles. Such difficulties are
inherent to the architecture of conventional transformation
systems. What architectural aspects cause these problems?

Syntactic, pattern-directed bias: Conventional
transformation systems suffer from a syndrome that is
suggested by the aphorism: “To a hammer, all problems
look like a nail.” Much of the technology underlying
conventional transformation systems evolved out of
compiler and programming language research. Compiler
theory has developed mature and powerful tools for dealing
with syntax and that legacy has influenced the approaches
to transformation systems. That is to say, most
transformation specifications are very good at dealing with
program syntax and structure (including the structure of
abstract syntax of ASTs or Abstract Syntax Trees) and are
far less good at dealing with non-structural information,
e.g., such as the non-structural, large grain purposes of the
transformations. In fact, the commonly used term “pattern-
directed transformation” suggests this predisposition.
Pattern-directed transforms provide relatively few tools for
grouping sets of transformations, coordinating their
operation, and associating them with a large grain purpose
that transcends the fine grain structural aspects of the target
program. For example, there are few and crude tools to
express the idea that some subset of tightly related,
cooperating transformations is designed for the narrow
purpose of creating and placing loops in the target program.

A second aspect of the syntactic orientation is the
desire to force all transformation specification into a
declarative rule oriented form. High variation in the ASTs
induces a combinatorial explosion in the number of rules
needed to account for the variation. Even adding a small
amount of programming capability to the rule forms (e.g.,

Prolog like backtracking and arbitrary embedded
computations) reduces this explosion to a degree. Other
facilities (e.g., tag-driven transformations) can be added to
further reduce the explosion by dealing with the cross rule
dependencies.

The syntactic bias induces the huge search spaces
because it is a little like trying to find one’s way through a
maze with only a small knot hole view of the local area.
Unless the space has some global property that one can
exploit, finding the global maximum of such a space
requires exhaustive search.

Organization for architectural purpose: A second
aspect of this problem is that sets of transformations are
seldom organized into groups of related, cooperating
transformations aimed at achieving a specific global
architectural purpose or result2. Ideally, an architectural
purpose, either expressed at the outset of overall generation
or associated with a single generation phase, should have
global effects. It should enable sets of related, cooperating
transformations that are designed as a group to achieve that
purpose and disable groups that are designed to achieve
different architectural purposes. For example, the broad
organizational strategies employed to exploit a machine
with SIMD (Single Instruction, Multiple Data stream)
instructions (e.g., the Intel PentiumTM with MMX
instructions) will differ markedly from those employed for
a machine without such instructions (e.g., a vanilla
PentiumTM without MMX instructions).

In the first case, the global strategy employed by the
transformation set will be to derive constant data values
(e.g., weights of for a convolution operator) and organize
them into arrays. Arrays (used by loops) enable optimal use
of the SIMD parallelism. Likewise, a second strategy will
be to organize the formulas that operate on those data
values into loops that have bodies without internal
branching operations. The loops enable the parallelism but
intra-loop branching may disrupt or slow the streaming of
the constant data and thereby thwart the parallelism. In the
example that we will examine later in this paper, such a
strategy will require splitting a single loop with branching
logic in its body into several distinct loops where the
branching conditions are incorporated into the loop control
logic. Finally, the bodies of the loops will need to be
restructured into expressions built out of operators that are
structurally similar to the parallel instructions (e.g., an

2 Interpreting this most broadly, CAPE is an exception to
this in that it allows the loading of different sets of
transformations at the outset that are very purpose directed.
One set is designed to produce code, another to produce a
simulation, another to produce a model for use with model
checking software, another to produce various kinds of
graphic documentation, and so forth.

operator that adds four pairs of operands in parallel).

In the second case (i.e., the PentiumTM without MMX
instructions), the global strategy will be aimed eliminating
inner loops to allow simplification of complex branching.
For example, the branching tests within small inner loops
of convolution operators that are known a priori not to
depend on the indexes of the small inner loops may be
moved outside the inner loops. This reduces the number of
times the branching tests are computed. It also opens up the
opportunity to eliminate residual branching tests (still
within the small inner loops) that only depend on the loop
indexes. Unrolling the inner loops allows these residual
branch tests to be calculated at generation time thereby
eliminating the branching.

Anticipation of future optimization opportunities:
This latter example raises the issue of recording properties
of the componentry that may lead to reorganization
opportunities once the componentry is assembled into a
program. Conventional transformation systems allow no
easy way to express and then later exploit such information.
For example, the writer of a method describing the formula
for computing the weights associated with a convolution
neighborhood knows a priori that if the neighborhood is
hanging even one pixel off the edge of the image, all
weights will be zero. He also knows that the test to see if
the neighborhood is hanging off the edge of the image does
not depend on the indexes of any (anticipated) loop that
will traverse the neighborhood since these indexes will just
be offsets from some central pixel of the neighborhood.
The hanging test depends only the position of the
neighborhood centering pixel with respect to the
coordinates of the overall image. Therefore, whenever the
formula is substituted into some loop iterating over the
neighborhood, the neighborhood loop can be distributed
over the then and else branches of the edge hanging test
thereby effectively moving the branching test outside of the
neighborhood loop. Most transformation systems provide
no easy way to tell future optimization transformations
about such anticipated opportunities.

Similary, most conventional optimization systems
provide no mechanism to record knowledge of future
optimization opportunities that become known in the
course of executing early transformations. For example, in
the examples to be examined later in the paper, an early
transformation discovers the opportunity to perform a
reduction in strength optimization by turning a square
operation into a multiply operation. Unfortunately, the
operand of the square is an expression, so to prevent
multiple computations of the expression, it must be moved
out of line and stored in some temporary variable such as
“t1”. Thus, the square operation can now be represented by
the more efficient form “t1 * t1”. However, there is the
distinct possibility that future reorganizations of the
program might reduce the expression assigned to t1 to a

constant value thereby opening up the opportunity for
reducing the multiplication to a data constant by two
coordinated transformations: 1) a code movement
optimization that enables 2) a subsequent constant folding
optimization. We would like any simplification of t1’s value
expression to trigger an attempt at such an optimization.
The way AOG handles this is by adding tags to the code
that:

1) explicitly describe the newly introduced data flow
dependencies to reduce the computational effort of the
anticipated code movement and constant folding
transformations,

2) describe the optimization event that should trigger the
anticipated transformations (e.g., the simplification of
t1’s assigned value to a constant), and

3) provide the name of the transformation (i.e.,
_CheckFoldFlows) that should be attempted if and when
the optimization event occurs.

The reason that a generic constant folding pass over
the program will not find this optimization opportunity and
thereby trigger a cascade of succeeding simplifications is
that the optimization depends on a series of loosely
cooperating transformations3. The early transformations
create the enabling conditions for the later transformations.
This kind of coordinated application is not easy to
accomplish in a pure pattern directed transformation system
without significant computational costs.

Opportunistic application of anticipated
optimizations: Even if conventional transformation
systems were to represent anticipated optimizations, one
can never really be certain about when to apply them. The
target program will undergo significant reorganization
between the anticipation event and the opportune time to
apply the optimization transformations. In fact, the
opportunity is likely to depend less on the local structure of
the program and more on the events of the reorganization
process itself. For example, the code movement and
constant folding transformation discussed earlier is unlikely
to succeed unless one of the expressions has been
simplified to a data constant. Thus, in AOG, triggering this
tag-driven transformation is conditioned upon this

3 In the example we will examine, transformations
occurring after the reduction in strength optimization but
before the opportunity to apply the tag-driven
simplification will have moved and duplicated the source of
the data flows associated with t1 so that they emanate from
both the then and else clauses of a preceding if statement.
To enable constant folding, the tag-driven transformation
will have to copy the statement containing the “t1 * t1”
expression into both branches of the if. Only on the then
branch will constant folding be successfully enabled.

optimization event. We call such transformations event-
driven transformations.

Other event-driven transformations (e.g., those that
perform code movement in the presence of loops) may be
organized into stages, each of which achieves a well-
defined organizational purpose and prepares the target
program for the next stage. Thus, each stage expects a
certain set of abstract, global program properties to hold
before it performs its operations. For example, the
transformations that manipulate loops (e.g., loop unrolling)
expect that all transformations that perform code movement
in the presence of loops have been completed. Thus,
staging is a way to impose an abstract optimization
algorithm on the program where the stages are the
algorithm’s steps and where the details of the steps (i.e.,
what operations are performed, what part of the AST they
affect, and when they get called) are determined by tags on
the AST itself. The steps are anticipated and recorded by
the programmer or by earlier transformations. In addition,
the event driven transforms behave like interrupts that
allow for operations whose invocation details cannot be
planned in advance and whose affect is largely
simplification. Stages are just a series of optimization
events organized on a strict timeline.

In contrast to AOG, conventional transformation
systems are not organized to anticipate optimization
opportunities, or to defer their actual application, or to
condition that application on events specific to the
optimization process itself. This leads to their exploring
optimization opportunities at the wrong time because there
is no global sense of purpose to filter out ill-timed or
fruitless explorations.

In summary, the search space induced by conventional
program generation strategies is often too large to allow
search for optimal versions (or even near-optimal) of
generated programs. Conventional transformation systems
lack the tricks that mimic a programmer’s strategy to find
near optimal solutions, tricks such as:

1) purpose-based organization that relates groups of
cooperating transformations,

2) the use of global architectural guidance in choosing
which sets of transformations to enable,

3) the anticipation and recording of future optimization
opportunities,

4) the deferred application of optimizations, and

5) the ability to inter-mix transformations aimed at global
architectural purposes with opportunistic
transformations that dynamically exploit optimization
opportunities.

This paper will describe a system designed specifically to
exploit such tricks to reduce the search space and thereby

produce near optimal programs.

3 THE ANTICIPATORY OPTIMIZATION
SYSTEM
The most distinct architectural feature of the AOG

generator is the ability to deal with tags attached to any
element of the Abstract Syntax Tree (AST) of the target
program and use those tags to trigger late stage optimizing
transformations. The tags can be thought of as an abstract,
distributed optimization plan. They capture knowledge
about the program and optimization process that is not
easily derived or represented using pattern-directed
transformations.

The generator both manipulates the tags (i.e., reasons
about the tags, the domain information, and the program
constructs) and eventually executes the optimizing
transformations denoted by tags (e.g., the
_PROMOTECONDITIONABOVELOOP tag triggers a
transformation that tries to move a condition test outside of
a loop). Furthermore, some tags may depend on
optimization events (e.g., substitution of a tagged
expression) for their triggering condition, which may, in
turn, trigger a whole cascade of other opportunistic
transformations. Through this tag-driven optimization
process, delocalized code gets relocalized and redundant
code gets shared.

In short, the approach is to plan optimization strategies
abstractly in the problem domain, record the plan via tags
added to program components, and execute the plan in the
low level programming domain using tag-driven
transformations.

4 APPROACH
4.1 Example

An example of a domain specific programming
expression is illustrated by the expression for Sobel edge
detection in bitmapped images.

Dsdeclare image a, b :form (array m n) :of bwpixel;

b = [(a ⊕⊕ s)2 + (a ⊕⊕ sp)2]1/2 ;

where a and b are (m X n) grayscale images and ⊕⊕ is a
convolution operator that applies the template matrices s
and sp to each pixel a[i,j] and its surrounding neighborhood
in the image a to compute the corresponding pixel b[i,j] of b.
s and sp are OO abstractions that define the specifics of the
pixel neighborhoods (i.e., their sizes and shapes, the
weights associated with each position in the neighborhood,
and any special processing such as the special case test for s
or sp hanging off the edge of the image). The convolution
operator iterates over the image a performing a sum of the
products of each of the neighborhood’s weights times each
of the pixels in the neighborhood of a[i,j]. For this example,
the neighborhood weights of s and sp are defined as

s [(-1:1), (-1:1)] = {{-1, 0, 1}, {-2, 0 , 2}, {-1, 0, 1}} and
sp [(-1:1), (-1:1)] = {{-1, -2, -1}, {0, 0, 0}, {1, 2, 1}}

In the case of any neighborhoods that are partly off the
edge of the image, the resultant pixel is defined to be 0.

For a single CPU Pentium machine without MMX
instructions (which are SIMD instructions that perform
some arithmetic in parallel), the AO generator will produce
code that looks like

for (i=0; i < m; i++) /* Version 1 */
 {im1=i-1; ip1= i+1;
 for (j=0; j < n; j++)
 { if(i==0 || j==0 || i==m-1 || j==n-1) /* Off edge */
 then b[i, j] = 0;
 else { jm1= j-1; jp1 = j+1;
 t1 = a[im1, jm1] * (-1) + a[im1, j] * (-2) +
 a[im1, jp1] * (-1) + a[ip1, jm1] *1 +
 a[ip1, j] * 2 + a[ip1, jp1] * 1;
 t2 = a[im1, jm1] * (-1) + a[i, jm1] * (-2) +
 a[ip1, jm1] * (-1) + a[im1, jp1] *1 +
 a[i, jp1] * 2 + a[ip1, jp1] * 1;
 b[i, j] = sqrt(t1*t1 + t2*t2)}}}

This result requires 92 large grain transformations and
is produced in a few tens of seconds on a 400 MHz
Pentium. This is not particularly fast at the moment but
redesigning the implementation data structures should
reduce generation time to somewhere near the range of
optimizing compiler times. In any case, the AO generator
can write the code a good deal faster than I can.

In contrast, if the machine architecture is specified to
be MMX, the resultant code is quite different:

{int s[(-1:1), (-1:1)]={{-1, 0, 1}, {-2, 0 , 2}, {-1, 0, 1}};/* Version 2 */
int sp [(-1:1), (-1:1)]={{-1, -2, -1}, {0, 0, 0}, {1, 2, 1}};
for (j=0; j < n; j++) b[0,j] = 0 ; /*Zero image edge */
for (i=0; i < m; i++) b[i,0] = 0 ; /*Zero image edge */
for (j=0; j < n; j++) b[(m-1),j] = 0 ; /*Zero image edge */
for (i=0; i < m; i++) b[i,(n-1)] = 0 ; /*Zero image edge */
{ for (i=1; i < (m-1); i++) /*Process inner image */
 { for (j=1; j < (n-1); j++)
 {t1 = unpackadd(padd2(padd2 (pmadd3 (&(a[i-1, j-1]),

 &(s[-1, -1])) ,
 pmadd3 (&(a[i, j-1]),

 &(s[0, -1]))),
 pmadd3(&(a[i+1,j-1]),&(s[1, -1])));
 t2 = unpackadd(padd2 (pmadd3 (&(a[i-1, j-1]),

&(sp [-1, -1])) ,
 pmadd3 (&(a[i+1, j-1]),

&(sp [0, -1])))));
 b[i,j] = sqrt(t1*t1 + t2*t2);}}}
where the routines unpackadd, padd2 , and pmadd3
correspond to MMX instructions and are defined as pmadd3
((a0, a1, a2) , (c0, c1, c2)) = (a0*c0+a1*c1, a2*c2 +0*0),
padd2 ((x0, x1) , (x2, x3)) = (x0+x2, x1+x3), pmadd3 ((a0,
a1, a2) , (c0, c1, c2)) = (a0*c0+a1*c1, a2*c2 +0*0), and
unpackadd((x0, x1)) = (x0+x1). All lend themselves to
direct translation into MMX instruction sequences. In this
example, s and sp have become pure data arrays to optimize
the use of the MMX instructions. Notice, that the special
case that tests to see if the template is hanging over the
edge of the image, has completely disappeared.
Transformations have split the main loop on that test,
turning the single loop of the previous version into five
loops. Four loops plug zeros into the four edges of the

image (i.e., the new form of the special case processing)
and one loop processes the inside of the image (i.e., the
non-special case processing). The fundamental difference
in the derivation of the two versions is in the tag driven
optimization phase. Up to that stage, the transformations
that fire are the same, resulting in two programs that are the
same except for the tags.

4.2 Operation
How does the AO generator accomplish this? The

generator is a multi-phase, transformation system. The
early phases use pattern-directed transformations (i.e.,
transformations that trigger based on AST patterns) to
translate the high level operands into lower level
conventional programming constructs. For example, these
transformations will refine images into pixels, pixels into
channels, and channels into integers. In the course of this,
they reason over the domain specific information to create,
place, move, and fuse the looping constructs implied by the
various operators. These loop creation transformations
encode loop information as tags that are attached to AST
expressions, moved over the AST and merged based on the
semantics of the AST expressions involved. [2] These early
stage transformations may also perform opportunistic
optimizations. For example, in the convolution example
above, a pattern-directed transformation recognized that the
expressions (a ⊕⊕ s)2 and (a ⊕⊕ sp)2 allow a reduction in strength
optimization to (t1 * t1) and (t2 * t2) , if the temporary
assignments t1 =(a ⊕⊕ s) and t2 =(a ⊕⊕ sp) are created and moved
out of line.

The later phases use tag-directed transformations to
reorganize the program for high performance. The tags
trigger transformations that incorporate operator definitions
(e.g., the convolution operator and calls to the methods of s
and sp), reorganize the resulting forms (e.g., move a loop
into an if-then-else), and simplify the resulting code. These
reorganizations may cause optimization events (e.g., a
substitution event) that further trigger event-based
transformations, i.e., via the mechanism of tags with
explicit triggering conditions. These may cascade to
completely reorganize the program. For example,
substitution of the convolution operator definitions in the
earlier example starts a cascade of transformations. It
moves the neighborhood loop into the then and else legs of
the if-then-else expression that computes the weights,
moves the multiplication of the a[i,j] pixel into the then and
else legs (recursively), and triggers constant folding that
reduces the loop in the then leg to zero. [3]

Tags may be added at any time. Some are pre-
positioned on reusable library components (e.g., on the
definition of the convolution operator) in anticipation of
potential optimizations. For example, the programmer of
the reusable library might add the tag

(_On SubstitutionOfMe (_PromoteConditionAboveLoop ?piter ?qiter))

to the special case test within the definition of W of s and sp
because he knows that the conditional expression of the if
statement will not depend on the indexes of the inner most
convolution loops. This tag is conditioned upon the
optimization event “SubstitutionOfMe” which means that the
transformation _PromoteConditionAboveLoop will only get
triggered when the if statement to which the tag is attached
gets substituted in the AST.

Tags are also added and deleted by other
transformations in the course of generation.
Transformations may discover knowledge fleetingly in the
midst of their computation that suggests a candidate
optimization. For example, the reduction in strength
transformation describe above anticipates the likelihood
that the data flows it introduces can be re-manipulated to
enable constant folding when certain optimization events
occur. Such knowledge is captured by adding a tag such as:

(_On MigrationOfMe (_CheckFoldFlows))

which will cause the _CheckFoldFlows transformation to be
triggered if the subtree to which the tag is attached gets
moved4.

Tags capture knowledge that is not easily derivable
from the AST patterns or from operator or operand
semantics. These are usually properties that would require
some deep inference, some sense of the optimization
opportunities particular to the evolving program or some
knowledge that is fleetingly available in the course of
transformation execution.

4.3 A Tag-Directed Transformation Scenario
This section will overview the tag-driven

reorganization that produces the non-MMX version of the
example. The pattern-directed phases of AOG perform loop
introduction, placement and fusion. In the course of that,
they may also perform some opportunistic optimizations
(e.g., reduction in strength of the square operator). This
phase of AOG is described elsewhere [2] and we will not
consider it further here. At the end of the pattern-directed
phases, the example has the following form expressed in a
C-ish pseudo-code.

for (i=0; i < m; i++)
 for (j=0; j < n; j++)
 { t1 = (a[i,j] ⊕ ⊕ s);
 t2 = (a[i,j] ⊕⊕ sp);
 b[i,j] = sqrt(t1*t1 + t2*t2) }
This expression gets transformed as follows:

The start of the tag-directed phases triggers inlining of the
definition of ⊕⊕ in the expression (a[i,j] ⊕ ⊕ s). The definition
contains calls to the methods of s and sp defining the

4 A new event is planned (i.e., SimplificationToConstant) to
reduce the number of times _CheckFoldFlows is triggered and
fails before it finally succeeds.

neighborhood size (prange, and qrange), the relative pixel
locations (row , col), and the pixel specific weights (w).These
method definitions of s and sp are recursively inlined.

The substitution of the w method triggers the tag
(_PromoteConditionAboveLoop p q) where p and q are the indexes
of the neighborhood loop. _PromoteConditionAboveLoop fails to
meet its enabling condition because it is inside of an
expression (a[i,j] * …) and so calls _IncorporateContext to try to fix
the problem, which distributes the expression over the then
and else clauses. After that, the enabling conditions are met
and the neighborhood loop too is distributed over the then
and else branches. When the loop formed on the then
branch is partially evaluated, it collapses to a constant 0.
This completes the work of _PromoteConditionAboveLoop.

The else branch had the tag (_on substitutionofme (
_IncoporateContext)) which is triggered causing the expression
(a[i,j] * <else leg>) to be rewritten with the (a[i,j] * …) moved
inside the else branch. _IncorporateContext is recursively
applied for each embedded if-then-else statement. Partial
evaluation of resulting expressions reduces results to their
simplest forms.

The expression (a[i,j] ⊕⊕ sp) undergoes an analogous set
of transformations. At this point, each of the two temporary
variable assignment statements look like:

(t2 = (if ((i == 0) || (j == 0) || (i == (m - 1)) || (j == (n - 1)))
 then 0
 else (_sum (p q)

 (_member p (_range -1 1))
 (_member q (_range -1 1)))

 (if ((p != 0) && (q != 0))
then (a[(i + p) , (j + q)] * p
else if ((p != 0) && (q == 0))

then (a[(i + p) , (j + q)] *(2 * p))
else 0)))))

where the highest level branching test is there to detect the
case of the neighborhood hanging partially off the edge of
the image. At this point, there are no more transformations
to be triggered, so the system moves to the next stage,
which is designed to try to share code across the
subexpressions of the original expression. It does this by
posting an artificial event naming the stage.

A tag attached to the outer if-then that is conditioned
on this event has been waiting. It will call
_MergeCommonCondition whose objective is to eliminate
redundant tests by performing the rewrite:

{ if ?a then ?b else ?c; if ?a then ?d else ?e }
=> if ?a then {?b; ?d} else {?c ; ?e}

The transformation is unable to meet its enabling
conditions and recognizing why, calls _IncoporateContext to
distribute the assignments over the relevant then and else
branches. At this point, the conditions of the ifs can be
merged.

Recall from our early discussion, a reduction in
strength optimization created t1 and t2, and moved the

expressions out of line. In the course of that rewrite, it
added tags to the t1 and t2 assignments that trigger an
optimization (i.e., _CheckFoldFlows) when the right hand side
of the assignment becomes a constant. If all of the data
flow and dependency enabling conditions are met, the
transformation removes the expression b[i,j] = sqrt(t1*t1 + t2*t2)
from its current position and copies it into both legs of the
if-then, from whence the data flows now originate. With
constant folding, the then branch is transformed from {t1=0;
t2=0; b[i,j] = sqrt(t1*t1 + t2*t2)} to b[i,j] = 0. The else branch does not
qualify for constant folding, so _CheckFoldFlows performs no
further manipulation of it.

No other opportunistic transformations are triggered,
so the system posts the event signaling the final stage. Its
job is to achieve in-place simplifications under the
assumption that the major code movement stages have
completed their work. For the non-MMX architecture, the
_UnWrapIfSmallConstant transformation will be triggered twice
which with partial evaluation will reduce the temporary
variable assignments to forms like:

t2 = ((a[(i + 1) , (j + 1)] + (a[(i + 1) , j] * 2) +
 a[(i + 1) , (j -1)] - a[(i -1) , (j + 1)] -

 (a[(i -1) , j] * 2) - a[(i -1) , (j -1)]))

The final two remaining tags will trigger the
transformations _PromoteAboveLoop and _PromoteToTopOfLoop
which will hoist the code for the common indexing
expressions to temporary assignments and replace them
with the temporary variables im1, ip1, jm1, and jp1.

5 THE SCHEMA LANGUAGE
5.1 Purpose and Essence of the language

AOG is built in terms of highly purposeful, large-grain
programmatic transformations, e.g., transformations that
create, place, and fuse loops. This design induces a large
degree of variation in the AST patterns that must be dealt
with. For example, the _MergeCommonCondition rule discussed
earlier must account for variations including: two orderings
for the two if statements, optional else clauses, optional tag
structures on the overall if as well as its subexpressions,
and optional forms for leaf structures (e.g., “0” or “(leaf 0
(tags ….))”). To insulate the transformations from this
variability and thereby reduce their complexity, AOG uses
a unification-based, Prolog-like schema language in which
to specify the AST patterns. It thereby allows the
parameterization of the transformations by logical or
conceptual schemas. These schemas insulate the
transformations from the details and variations in the AST
in much the same way that logical and conceptual schemas
insulate database management systems from the physical
details and format variations of databases. As a result, the
transformations are performing their operations on
conceptual patterns within the AST thereby reducing the
case logic within the transformations.

The schema language [4] is a fully backtracking
Prolog-like language that performs pattern-matching,

parameter binding, enabling condition checking, and
logical inference for the transformations. The schemas are
first class objects that are created dynamically, stored
within the AOG’s data structures, and executed by the
transformations. The schema language provides the major
Prolog-like operators (e.g., and, or, not, mark, cut, bind, is,
succeed, fail, prove, and rule definition). It also provides
operators tailored to the job of generation including
operators that span sections of an AST, bind the remainder
of a list, search top-down or bottom-up, rename local
variables, use dynamically computed variable values as
patterns, invoke and use rule sets for inference, navigate
object structures, perform recursive matching, and execute
arbitrary Lisp expressions. It is fully backtracking thereby
allowing a schema execution to fail, backup to the last
choice point and restart with the next choice. This allows
schema executions to explore all possible bindings in their
search for a desired match. Schemas are always executed in
the context of a current position in the AST. Any structures,
literal data, variables, or matching operations in the schema
must match the structures, literal data, CLOS objects, and
atoms at the current point of the AST subtree.

A schema is fundamentally a pattern of literal data
with pattern matching and logical operations embedded.
The style of schema expression is inverse quoting which
means that literal data is expressed directly whereas
variables and operations are expressed with some syntactic
sugar to distinguish them from the literal data. Specifically,
schema variables5 are symbols preceded by a question
mark, e.g., ?x. Operator expressions are preceded by a
dollar sign. For example, the or operator expression $(por ?x
?y) requires that the value of the variable ?x or the value of
?y must match the item at the current position in the tree. As
a further example, the matching operation $(ptest numberp)
requires that the item matched is a Lisp number. Matching
is accomplished by unification of schema variables with
literal data or variables in the AST. This means that if a
variable is already bound to a value at some earlier point in
the matching process, then the current item in the AST
must be that same value or a variable that is bound to that
value. If a variable is unbound at the time it is matched,
unification will cause it to become bound to the current
item in the AST.

5.2 Application of schemas
The schema engine is used in a variety of ways within

the generator. For example, many of generator
computations exhibit a stereotypical pattern. They fetch the
schema value from some slot in a CLOS object

5 We must distinguish these pattern or schema variables
(e.g., ?x) from the variables in the target program (e.g., x).
Pattern variables exist only at generation time and their
values are often target program variables or expressions
that will become part of the target program.

representing an operator or operand (e.g., the
backwardconvolution operator of Figure 1), execute that
schema, and then use the resultant bindings to direct the
subsequent computation. For example, when selecting a
particular pattern-directed transformation to run, they
execute the schema in the slot representing the current
translation stage (e.g., the fusion2 or fusion3 slots in Figure
1)6. If successful, the resultant bindings name the
transformation to be run (e.g., the backwardconvolutiononleaves
or reduceconvolutionoperator slots in Figure 1). Similarly, when
selecting refinements for operator or method expressions
(e.g., calls to the W, Row, or Col methods of s or sp), the slot
of s or sp containing the replacement for the operator or
method expression is determined by executing a schema in
the formals slot of s or sp. In addition to providing the slot
name containing the refinement, the schema execution also
determines what bindings should be applied to that
refinement before it is substituted

Schemas are also used in a variety of other ways. For
type inference, a schema in the operator’s definition (in the
infertype slot) is run and the result is the inferred type bound
to the pattern variable ?itype. Additionally, schemas are used
1) to search over the expression AST to find tags that will
trigger transformations, 2) to do some lightweight
reasoning about the programs, and 3) to recognize
expressions to be simplified by the partial evaluator.

5.3 The Reusable Components
The code for some operators must be generated

dynamically (e.g., most loops) but some can be statically
defined a priori when their arguments have been refined to

6 Only the top few levels of the list structures are shown in
Figure 1. The elided portions are indicated by the “#”
symbol. Schema values are shown as “(*pat* (lambda (…) …)”
which is the compiled form of “$(oper …)” expressions.

implementation levels (e.g., the ⊕ ⊕ operator applied to
implementation level pixels). For example, the ⊕ ⊕ operator
applied to an integer array that is the implementation form
of an image and a template type that is the implementation
form of a neighborhood description is defined by the
arrayelementXtemplate method of the ⊕ ⊕ operator:

(DefComponent arrayelementXtemplate
 (#.BackwardConvolutionOp #.ArrayReference

#.TemplateReference)
 (_Sum (?p ?q)
 (_SuchThat
 (_Member ?p
 (PRange ?template (aref ?aname ?iter1 ?iter2)

 ?plow ?phigh ?p))
 (_Member ?q

 (QRange ?template (aref ?aname ?iter1 ?iter2)
 ?qlow ?qhigh ?q)))

 (* (aref ?aname
 (row ?template (aref ?aname ?iter1 ?iter2) ?p ?q)

 (col ?template (aref ?aname ?iter1 ?iter2) ?p ?q))
 (w ?template (aref ?aname ?iter1 ?iter2) ?p ?q))
 (tags (_On CFWrapUpEnd (_UnWrapIfSmallConstant (?p)

 (abs (- ?plow ?phigh))))
(_On CFWrapUpEnd (_UnWrapIfSmallConstant (?q)

 (abs (- ?qlow ?qhigh)))))))

where the parameters BackwardConvolutionOp, ArrayReference, and
TemplateReference are schema patterns defined elsewhere (see
[4]) that respectively match the CLOS definition of the ⊕⊕
operator (i.e., the CLOS object of Figure 1), an integer
array reference (e.g., a [i, j] which is expressed in the AST as
(aref a i j)), and a template abstraction (e.g., s). This
arrayelementXtemplate definition is the canonical form for
the convolution’s inner loop that computes the convolution
value for the neighborhood around some pixel ?aname[?iter1,
?iter2]. Notice that the tags in this definition anticipate the
unwrapping of the loops controlled by ?p and ?q if the
expression “(abs (- ?plow ?phigh))” is a small constant for some
definition of small. The variables ?plow and ?phigh are the
upper and lower range values of ?p and will be bound by
the TemplateReference pattern. The transformation
_UnWrapIfSmallConstant will be triggered when the event
CFWrapUpEnd is posted by the generator. Such events are
used to sequence stages of the tag-driven process.

Defcomponent or-s a doctored version of the
parameter list schema onto the schema value already in the
formals slot of the BackwardConvolutionOp object7 of Figure 1
and stores the body of the definition in the
arrayelementXtemplate slot. Thus, the formals slot contains a
pattern that when matched to an AST structure will
determine which method (if any) is applicable and what
AST values should be bound to the pattern variables such
as ?aname, ?iter1, ?iter2, etc.

The neighborhood s is defined in terms of the methods
PRange, QRange, Row, Col, and W that respectively compute the
ranges for the row and columns, the row and column

7$(por ParmlistPattern (formals BackwardConvolutionOp))

Figure 1 - Definition of the ⊕ ⊕ Operator

indexes and the weights associated with each pixel of the
neighborhood. Example definitions are:

(Defcomponent Row (s #.ArrayReference ?piter ?qiter)
 (+ ?iter1 ?piter))

(Defcomponent W (s #.ArrayReference ?piter ?qiter)
 (if (or (== ?iter1 ?i1low) (== ?iter2 ?i2low)
 (== ?iter1 ?i1high) (== ?iter2 ?i2high))
 (then 0)
 (else (if (and (/= ?piter 0) (/= ?qiter 0))
 (then ?qiter)
 (else (if (and (== ?piter 0) (/= ?qiter 0))
 (then (* 2 ?qiter))

 (else 0)))
 (tags (_On SubstitutionOfMe

(_IncorporateContext)))))
 (tags (_On SubstitutionOfMe

 (_PromoteConditionAboveLoop ?piter ?qiter))
 (_On CFWrapUp (_MergeCommonCondition)))))

Not all parameters are explicitly acquired from the
argument list. The ArrayReference pattern matches ?aname[?iter1,
?iter2] and then navigates via object relationship links to get
the range values [?i1low : ?i1high] and [?i2low : ?i2high]

defined for ?iter1 and ?iter2. Analogous to the ⊕⊕ operator, s
is represented as a CLOS object. As with the definition of
the ⊕⊕ operator, Defcomponent or-s a doctored form of each
parameter list onto the existing schema in the formals slot of
s and stores the bodies in slots Row, Col and W of s.

Notice that W’s definition anticipates several kinds of
optimizations to be tried whenever the tagged expressions
get substituted into a different expression. For example, the
substitution of W’s body will trigger the
_PromoteConditionAboveLoop transformation.

These defcomponents are conceptually analogous to what
the transformation community would call forward
refinements and would represent in a rule form like

(Row s #.ArrayReference ?piter ?qiter) => (+ ?iter1 ?piter)

The key difference is that such forward refinement rules are
often global and more general in form (e.g., the pattern
might contain a variable in place of s). This increases the
opportunities for them to be applied at inappropriate points
thereby exploding the search space. Defcomponent
localizes such rules to specific abstractions (e.g., s) thereby
allowing them to be considered only when their associated
abstractions are being processed. This reduces the search
space explosion.

6 CONTRIBUTIONS
AOG make several contributions. It uses tag-driven

transformations to exploit knowledge and operations that
are ill suited to pattern-directed transformations thereby
allowing planning in the problem domain and optimization
execution in the programming and optimization domains. It
stages transformation phases so that each is organized to
achieve a narrowly defined translation or optimization
purpose. It provides event-driven tags that allow for
opportunistic optimizations as well as for interdependent,

anticipated optimizations that can be organized on a time
line to assure their consistent application. It reasons over
the domain specific operators and operands early in the
translation process to produce tags that can thereby take
advantage of that domain specific knowledge later in the
optimization process when, conventionally, all of the
domain specific knowledge would have been translated
away. It localizes pattern-directed transforms and
component definitions to specific abstractions within an
inheritance hierarchy thereby reducing the opportunity for
them to explode the search space by being applied in
inappropriate situations. It uses a schema language to
insulate the transformations from the physical details and
variations in the AST.

7 RELATED RESEARCH
This work bears the strongest relation to Neighbors

work. [8] The main differences are 1) the fact that the AOG
pattern-directed transformations are organized into an
inheritance hierarchy which guides the choice of which
transformations to try, and 2) the use of the tag-directed
approach for program optimization. Neighbors uses
pattern-directed transformations during his optimization.

The work bears a strong relationship to Kiczales'
Aspect Oriented programming at least in terms of its
objectives but the optimization machinery appears to be
quite different. [7] Kiczales' optimization mechanism
seems not to be distributed over the AST and the
optimization algorithms do not appear to be manipulated by
the transformations. In contrast, the AOG’s tags are
distributed over the program and they undergo
transformations as the generator reasons about the domain,
the program, and the optimization tags.

This work is largely orthogonal but complementary to
the work of Batory. [1] Batory optimizes his type equations
to choose the optimum components from which to
assemble classes and methods. AOG inlines and
interweaves the bodies of methods invoked by
compositions of method calls (i.e., expressions). Thus,
Batory’s generation focus is at the class level and AOG’s is
at the instance level. For details of the relationship see [4].

AOG and Doug Smith's work are similar in that they
make heavy use of domain specific information in the
course of generation. [9] They differ in the machinery used.
Smith's work relies more heavily on inference machinery
than does AOG. The reasoning that AOG does is narrowly
purposeful and is a somewhat rare event (e.g., the
transformation that splits the loop in the MMX example
above does highly specialized reasoning about loop limits).
However, partial evaluation (a form of inference) is heavily
used in AOG, which is how three level if-then-else
expressions (which are interweavings of the definitions of
W, Row, Col and BackwardConvolutionOp) get reduced to
expressions like "a[im1, j] * (-2)".

The organization of the transformations into goal
driven stages is similar to Boyle’s TAMPR [5]. However,
Boyle does not use tags.

The schema language is most similar to the work of
Wile [11, 12] and Crew [6]. Popart leans more toward an
architecture driven by compiling and parsing notions. As
such, it is influenced less by logic programming. On the
other hand, ASTLOG is more similar to the AOG schema
language in that it is heavily influenced by logic
programming. However, ASTLOG’s architecture is driven
by program analysis objectives and is not really designed
for dynamic change and manipulation of the AST. It
assumes that its target is a set of link files produced by a
compile and link operation, thereby producing a batch-
oriented model of AST manipulation. Such a model is not
well suited to dynamic manipulation and change of the
AST under the control of a transformation-based generator.

There are a variety of other connections that are
beyond the space limitations of the paper. For example,
there are relations to metaprogramming [12], logic
programming based generation, formal synthesis systems
(e.g., Specware) [10], deforestation and other procedural
transformation systems (e.g., Refine). The differences are
greater or lesser across this group and broad generalization
is hard. However, the most obvious general differences
between AOG and most of these systems is AOG’s use of
transformations that operate in the optimization problem
domain and are triggered based on optimization-specific
events. Additionally, the AOG control structure is unusual.
The overall optimization process behaves like an abstract
algorithm where the algorithmic steps are stages and where
the details of the steps (i.e., what operations are performed,
what part of the AST they affect, and when they get called)
are determined by tags on the AST itself. In addition, the
event driven transforms behave like interrupts that allow
for operations whose invocation details cannot be planned
in advance and whose effect is largely simplification.

8 CONCLUSIONS
AOG is being developed to study of the effects of

architectural variations on programming leverage,
variability, performance, and search space size. While still
early, it has demonstrated that some operators and types
can be deeply factored to allow highly varied re-
compositions while simultaneously allowing the generation
of high performance code without huge search spaces. It
suggests that one day it may be possible to simultaneously
achieve the mutually antagonistic goals of high
programming leverage, high variability, adequate
performance and small search spaces.

9 REFERENCES
1. Batory, Don, Singhal, Vivek, Sirkin, Marty, and

Thomas, Jeff, "Scalable Software Libraries,"
Symposium on the Foundations of Software
Engineering. Los Angeles, CA, December, 1993.

2. Biggerstaff, Ted J., "Anticipatory Optimization in
Domain Specific Translation," International
Conference on Software Reuse, Victoria, B. C.,
Canada, June 1998, pp. 124-133.

3. Biggerstaff, Ted J., "Composite Folding in
Anticipatory Optimization," Microsoft Research
Technical Report MSR-TR-98-22, June 1998, pp. 10.

4. Biggerstaff, Ted J., "Pattern Matching for Program
Generation: A User Manual," Microsoft Research
Technical Report MSR-TR-98-55, December 1998, pp.
46.

5. Boyle, James M., “Abstract Programming and Program
Transformation—An Approach to Reusing Programs,”
In Ted J. Biggerstaff and Alan Perlis (Eds.), Software
Reusability, Addison-Wesley/ACM Press, 1989, pp.
361-413.

6. Crew, R. F., ASTLOG: A Language for Examining
Abstract Syntax Trees, In Proceedings of the USENIX
Conference on Domain-Specific Languages,
“ASTLOG: A Language for Examining Abstract
Syntax Trees,” Santa Barbara, California, October
1997.

7. Kiczales, Gregor, Lamping, John, Mendhekar, Anurag,
Maede, Chris, Lopes, Cristina, Loingtier, Jean-Marc
and Irwin, John "Aspect Oriented Programming,"
Tech. Report SPL97-08 P9710042, Xerox PARC,
1997.

8. Neighbors, James M., "Draco: A Method for
Engineering Reusable Software Systems." In Ted J.
Biggerstaff and Alan Perlis (Eds.), Software
Reusability, Addison-Wesley/ACM Press, 1989, pp.
295-319.

9. Smith, Douglas R., "KIDS-A Knowledge-Based
Software Development System," in Automating
Software Design, M. Lowry & R. McCartney, Eds.,
AAAI/MIT Press, 1991, pp.483-514.

10. Srinivas, Y. V. “Refinement of Parameterized
Algebraic Specifications,” in Bird, R. and Meertens, L.
eds. Proceedings of a Workshop on Algorithmic
Languages and Calculii. Alsac FR. Chapman and Hill.
February, 1997, pp. 164-186.

11. Wile, David S., “Popart: Producer of Parsers and
Related Tools,” USC/Information Sciences Institute
Technical Report, Marina del Rey CA 1994. (http://
www.isi.edu/software-sciences/wile/Popart/
popart.html)

12. Wile, David S. “Toward a Calculus for Abstract
Syntax Trees,” in Bird, R. and Meertens, L. eds.
Proceedings of a Workshop on Algorithmic Languages
and Calculii. Alsac FR. Chapman and Hill. February,
1997, 324-352.

