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ABSTRACT 
Defining domain specific abstractions for generator 
systems leads to a quandary between choosing abstractions 
that exhibit powerful programming amplification through 
the combinatorial opportunities provided by composition, 
and choosing abstractions that can be easily transformed 
into high performance code. Most generators opt for 
abstraction to improve programming productivity, which 
usually compromises target program performance. 
Transformation-based generators widen the quandary 
through deep factorization of operators and operands to 
amplify expressive power, but this explodes the search 
space. My hypothesis is that existing architectures are 
inadequate to achieve simultaneously high levels of 
abstraction, high performance target programs and small 
solution search spaces. To explore architectural variations 
to address this quandary, I have implemented a generator 
in Common LISP designed specifically to address these 
problems. It is called the Anticipatory Optimization 
Generator (AOG) because it allows programmers to 
anticipate optimization opportunities and to prepare an 
abstract, distributed plan that attempts to achieve them.  
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1 PROBLEMS 

Program generators compile high level, compact, (and 
usually domain specific) languages into conventional 
programming languages like C or Java thereby improving 
programming productivity, code safety, ease of 
understanding, and so forth. The same properties that make 
such domain specific language (DSL) representations 
appealing make compiling them into high performance 
code difficult. The performance problems arise because 
DSLs tend to delocalize performance-related elements of 
the target code and introduce high levels of redundancy. 
The various approaches to re-localize (i.e., reorganize) the 
code and remove redundancy to achieve high degrees of 
optimization (e.g., approaches like conventional 
optimization, optimizing transformations, specialization, 
etc.) all have practical problems that call into question their 
feasibility. The fundamental problem is that dependencies 
between distant uses of operators and operands make re-
localization and redundancy removal hard. When 

attempting to reorganize components for near optimum 
performance, the architectures of conventional 
transformation systems induce very large search spaces. 
Therefore, commercial transformation systems that must 
deal with large programs rely on forward refinement as 
their fundamental mode of operation and forego significant 
program reorganization and optimization. For example, 
CAPE, a generator built on Draco [8] and specialized to 
communications problems, exploits few or no optimization 
transformations and relies on the problem domain to allow 
solutions that are acceptable with limited or no 
optimization. In fact, Neighbors asserts that often he either 
ignores optimizations completely and depends on default 
forward refinement transformations or he uses the 
programmer as an oracle to guide the generator through the 
myriad choices of optimizing transforms. 

The problems of conventional transformation systems 
are inherent to their architectures.  In this paper, we will 
explore the architectural characteristics that lead to these 
large search spaces and explore how their architecture can 
be changed to overcome these problems. 

2 PROBLEMS INDUCED BY ARCHITECTURE 

Scale-Variation-Performance-Search Space 
Dilemma: The fundamental problem is that transformation-
based generators are trying to achieve four mutually 
antagonistic goals. They want to use big building blocks or 
equivalently high degrees of composition (i.e., scale) to 
achieve high programming leverage. They also want to 
provide high degrees of variation in the target program so 
that the resulting programs will be widely applicable. 
Finally, they want to produce programs with sufficiently 
good performance to be practical in the real world without 
engendering huge solution search spaces. These goals are 
mutually antagonistic.  

Using big components impedes the variation goal 
because the combinatorial explosion of pre-coordinated 
design decisions for big components explodes the number 
of variants needed. Using small components and 
composition both nullifies the programming leverage 
achieved and explodes the search space induced by 
composing and organizing them for acceptable 
performance. Performance is a global property of a 
program that relies on coordinated design of the 
componentry from which the program is assembled. Such 



 

coordination limits the degree of variation that is possible.  

As a practical matter, compromises of one or more of 
these goals are the usual approach with the consequences 
being that the results are often not satisfactory to the user. 

Fundamentally, this dilemma arises from the goal to 
build universal canonical components that can be used 
everywhere and the fact that universal canonical 
components are often ill-tuned to work with other universal 
components. Tuning such components so that they work 
well together (e.g., have acceptable performance) is a 
process of revising the structure of each component to 
impose inter-component coordination such that certain 
desired global properties are achieved. Such tuning is hard 
and often induces impracticably large search spaces. In the 
example we will examine, this tuning process would 
involve a chain of 92 carefully ordered transformations 
where at each point in the chain, many other legal 
transformations are possible. But if different 
transformations are applied, the process is likely to dead-
end in a local minimum and never achieve the full 
performance potential. It is a bit like the requirement to 
have 92 carefully ordered miracles. Such difficulties are 
inherent to the architecture of conventional transformation 
systems. What architectural aspects cause these problems? 

Syntactic, pattern-directed bias: Conventional 
transformation systems suffer from a syndrome that is 
suggested by the aphorism: “To a hammer, all problems 
look like a nail.” Much of the technology underlying 
conventional transformation systems evolved out of 
compiler and programming language research. Compiler 
theory has developed mature and powerful tools for dealing 
with syntax and that legacy has influenced the approaches 
to transformation systems. That is to say, most 
transformation specifications are very good at dealing with 
program syntax and structure (including the structure of 
abstract syntax of ASTs or Abstract Syntax Trees) and are 
far less good at dealing with non-structural information, 
e.g., such as the non-structural, large grain purposes of the 
transformations. In fact, the commonly used term “pattern-
directed transformation” suggests this predisposition. 
Pattern-directed transforms provide relatively few tools for 
grouping sets of transformations, coordinating their 
operation, and associating them with a large grain purpose 
that transcends the fine grain structural aspects of the target 
program. For example, there are few and crude tools to 
express the idea that some subset of tightly related, 
cooperating transformations is designed for the narrow 
purpose of creating and placing loops in the target program.  

A second aspect of the syntactic orientation is the 
desire to force all transformation specification into a 
declarative rule oriented form. High variation in the ASTs 
induces a combinatorial explosion in the number of rules 
needed to account for the variation. Even adding a small 
amount of programming capability to the rule forms (e.g., 

Prolog like backtracking and arbitrary embedded 
computations) reduces this explosion to a degree. Other 
facilities (e.g., tag-driven transformations) can be added to 
further reduce the explosion by dealing with the cross rule 
dependencies. 

The syntactic bias induces the huge search spaces 
because it is a little like trying to find one’s way through a 
maze with only a small knot hole view of the local area. 
Unless the space has some global property that one can 
exploit, finding the global maximum of such a space 
requires exhaustive search. 

Organization for architectural purpose: A second 
aspect of this problem is that sets of transformations are 
seldom organized into groups of related, cooperating 
transformations aimed at achieving a specific global 
architectural purpose or result2. Ideally, an architectural 
purpose, either expressed at the outset of overall generation 
or associated with a single generation phase, should have 
global effects. It should enable sets of related, cooperating 
transformations that are designed as a group to achieve that 
purpose and disable groups that are designed to achieve 
different architectural purposes. For example, the broad 
organizational strategies employed to exploit a machine 
with SIMD (Single Instruction, Multiple Data stream) 
instructions (e.g., the Intel PentiumTM with MMX 
instructions) will differ markedly from those employed for 
a machine without such instructions (e.g., a vanilla 
PentiumTM without MMX instructions).  

In the first case, the global strategy employed by the 
transformation set will be to derive constant data values 
(e.g., weights of for a convolution operator) and organize 
them into arrays. Arrays (used by loops) enable optimal use 
of the SIMD parallelism. Likewise, a second strategy will 
be to organize the formulas that operate on those data 
values into loops that have bodies without internal 
branching operations. The loops enable the parallelism but 
intra-loop branching may disrupt or slow the streaming of 
the constant data and thereby thwart the parallelism. In the 
example that we will examine later in this paper, such a 
strategy will require splitting a single loop with branching 
logic in its body into several distinct loops where the 
branching conditions are incorporated into the loop control 
logic. Finally, the bodies of the loops will need to be 
restructured into expressions built out of operators that are 
structurally similar to the parallel instructions (e.g., an 

                                                        
2 Interpreting this most broadly, CAPE is an exception to 
this in that it allows the loading of different sets of 
transformations at the outset that are very purpose directed. 
One set is designed to produce code, another to produce a 
simulation, another to produce a model for use with model 
checking software, another to produce various kinds of 
graphic documentation, and so forth. 



 

operator that adds four pairs of operands in parallel). 

In the second case (i.e., the PentiumTM without MMX 
instructions), the global strategy will be aimed eliminating 
inner loops to allow simplification of complex branching. 
For example, the branching tests within small inner loops 
of convolution operators that are known a priori not to 
depend on the indexes of the small inner loops may be 
moved outside the inner loops. This reduces the number of 
times the branching tests are computed. It also opens up the 
opportunity to eliminate residual branching tests (still 
within the small inner loops) that only depend on the loop 
indexes. Unrolling the inner loops allows these residual 
branch tests to be calculated at generation time thereby 
eliminating the branching. 

Anticipation of future optimization opportunities:  
This latter example raises the issue of recording properties 
of the componentry that may lead to reorganization 
opportunities once the componentry is assembled into a 
program. Conventional transformation systems allow no 
easy way to express and then later exploit such information. 
For example, the writer of a method describing the formula 
for computing the weights associated with a convolution 
neighborhood knows a priori that if the neighborhood is 
hanging even one pixel off the edge of the image, all 
weights will be zero. He also knows that the test to see if 
the neighborhood is hanging off the edge of the image does 
not depend on the indexes of any (anticipated) loop that 
will traverse the neighborhood since these indexes will just 
be offsets from some central pixel of the neighborhood. 
The hanging test depends only the position of the 
neighborhood centering pixel with respect to the 
coordinates of the overall image. Therefore, whenever the 
formula is substituted into some loop iterating over the 
neighborhood, the neighborhood loop can be distributed 
over the then and else branches of the edge hanging test 
thereby effectively moving the branching test outside of the 
neighborhood loop. Most transformation systems provide 
no easy way to tell future optimization transformations 
about such anticipated opportunities. 

Similary, most conventional optimization systems 
provide no mechanism to record knowledge of future 
optimization opportunities that become known in the 
course of executing early transformations. For example, in 
the examples to be examined later in the paper, an early 
transformation discovers the opportunity to perform a 
reduction in strength optimization by turning a square 
operation into a multiply operation. Unfortunately, the 
operand of the square is an expression, so to prevent 
multiple computations of the expression, it must be moved 
out of line and stored in some temporary variable such as 
“t1”. Thus, the square operation can now be represented by 
the more efficient form “t1 * t1”. However, there is the 
distinct possibility that future reorganizations of the 
program might reduce the expression assigned to t1 to a 

constant value thereby opening up the opportunity for 
reducing the multiplication to a data constant by two 
coordinated transformations: 1) a code movement 
optimization that enables 2) a subsequent constant folding 
optimization. We would like any simplification of t1’s value 
expression to trigger an attempt at such an optimization. 
The way AOG handles this is by adding tags to the code 
that:  

1) explicitly describe the newly introduced data flow 
dependencies to reduce the computational effort of the 
anticipated code movement and constant folding 
transformations,  

2) describe the optimization event that should trigger the 
anticipated transformations (e.g., the simplification of 
t1’s assigned value to a constant), and  

3) provide the name of the transformation (i.e., 
_CheckFoldFlows) that should be attempted if and when 
the optimization event occurs. 

The reason that a generic constant folding pass over 
the program will not find this optimization opportunity and 
thereby trigger a cascade of succeeding simplifications is 
that the optimization depends on a series of loosely 
cooperating transformations3. The early transformations 
create the enabling conditions for the later transformations. 
This kind of coordinated application is not easy to 
accomplish in a pure pattern directed transformation system 
without significant computational costs. 

Opportunistic application of anticipated 
optimizations: Even if conventional transformation 
systems were to represent anticipated optimizations, one 
can never really be certain about when to apply them. The 
target program will undergo significant reorganization 
between the anticipation event and the opportune time to 
apply the optimization transformations. In fact, the 
opportunity is likely to depend less on the local structure of 
the program and more on the events of the reorganization 
process itself. For example, the code movement and 
constant folding transformation discussed earlier is unlikely 
to succeed unless one of the expressions has been 
simplified to a data constant. Thus, in AOG, triggering this 
tag-driven transformation is conditioned upon this 

                                                        
3 In the example we will examine, transformations 
occurring after the reduction in strength optimization but 
before the opportunity to apply the tag-driven 
simplification will have moved and duplicated the source of 
the data flows associated with t1 so that they emanate from 
both the then and else clauses of a preceding if statement. 
To enable constant folding, the tag-driven transformation 
will have to copy the statement containing the “t1 * t1” 
expression into both branches of the if. Only on the then 
branch will constant folding be successfully enabled. 



 

optimization event. We call such transformations event-
driven transformations. 

Other event-driven transformations (e.g., those that 
perform code movement in the presence of loops) may be 
organized into stages, each of which achieves a well-
defined organizational purpose and prepares the target 
program for the next stage. Thus, each stage expects a 
certain set of abstract, global program properties to hold 
before it performs its operations. For example, the 
transformations that manipulate loops (e.g., loop unrolling) 
expect that all transformations that perform code movement 
in the presence of loops have been completed. Thus, 
staging is a way to impose an abstract optimization 
algorithm on the program where the stages are the 
algorithm’s steps and where the details of the steps (i.e., 
what operations are performed, what part of the AST they 
affect, and when they get called) are determined by tags on 
the AST itself. The steps are anticipated and recorded by 
the programmer or by earlier transformations. In addition, 
the event driven transforms behave like interrupts that 
allow for operations whose invocation details cannot be 
planned in advance and whose affect is largely 
simplification. Stages are just a series of optimization 
events organized on a strict timeline.  

In contrast to AOG, conventional transformation 
systems are not organized to anticipate optimization 
opportunities, or to defer their actual application, or to 
condition that application on events specific to the 
optimization process itself. This leads to their exploring 
optimization opportunities at the wrong time because there 
is no global sense of purpose to filter out ill-timed or 
fruitless explorations. 

In summary, the search space induced by conventional 
program generation strategies is often too large to allow 
search for optimal versions (or even near-optimal) of 
generated programs. Conventional transformation systems 
lack the tricks that mimic a programmer’s strategy to find 
near optimal solutions, tricks such as:  

1) purpose-based organization that relates groups of 
cooperating transformations,  

2) the use of global architectural guidance in choosing 
which sets of transformations to enable,  

3) the anticipation and recording of future optimization 
opportunities,  

4) the deferred application of optimizations, and 

5) the ability to inter-mix transformations aimed at global 
architectural purposes with opportunistic 
transformations that dynamically exploit optimization 
opportunities. 

This paper will describe a system designed specifically to 
exploit such tricks to reduce the search space and thereby 

produce near optimal programs.  

3 THE ANTICIPATORY OPTIMIZATION 
SYSTEM 
The most distinct architectural feature of the AOG 

generator is the ability to deal with tags attached to any 
element of the Abstract Syntax Tree (AST) of the target 
program and use those tags to trigger late stage optimizing 
transformations. The tags can be thought of as an abstract, 
distributed optimization plan. They capture knowledge 
about the program and optimization process that is not 
easily derived or represented using pattern-directed 
transformations. 

The generator both manipulates the tags (i.e., reasons 
about the tags, the domain information, and the program 
constructs) and eventually executes the optimizing 
transformations denoted by tags (e.g., the 
_PROMOTECONDITIONABOVELOOP tag triggers a 
transformation that tries to move a condition test outside of 
a loop). Furthermore, some tags may depend on 
optimization events (e.g., substitution of a tagged 
expression) for their triggering condition, which may, in 
turn, trigger a whole cascade of other opportunistic 
transformations. Through this tag-driven optimization 
process, delocalized code gets relocalized and redundant 
code gets shared.  

In short, the approach is to plan optimization strategies 
abstractly in the problem domain, record the plan via tags 
added to program components, and execute the plan in the 
low level programming domain using tag-driven 
transformations. 

4 APPROACH 
4.1 Example 

An example of a domain specific programming 
expression is illustrated by the expression for Sobel edge 
detection in bitmapped images.  

Dsdeclare image a, b :form ( array m n) :of bwpixel;  

b = [ (a ⊕⊕ s)2 + (a ⊕⊕ sp)2]1/2 ; 

where a and b are (m X n) grayscale images and ⊕⊕ is a 
convolution operator that applies the template matrices s 
and sp to each pixel a[i,j] and its surrounding neighborhood 
in the image a to compute the corresponding pixel b[i,j] of b. 
s and sp are OO abstractions that define the specifics of the 
pixel neighborhoods (i.e., their sizes and shapes, the 
weights associated with each position in the neighborhood, 
and any special processing such as the special case test for s 
or sp hanging off the edge of the image). The convolution 
operator iterates over the image a performing a sum of the 
products of each of the neighborhood’s weights times each 
of the pixels in the neighborhood of  a[i,j]. For this example, 
the neighborhood weights of s and sp are defined as  

s [(-1:1), (-1:1)] = {{-1, 0, 1}, {-2, 0 , 2}, {-1, 0, 1}}   and  
sp [(-1:1), (-1:1)] = {{-1, -2, -1}, {0, 0, 0}, {1, 2, 1}} 



 

In the case of any neighborhoods that are partly off the 
edge of the image, the resultant pixel is defined to be 0. 

For a single CPU Pentium machine without MMX 
instructions (which are SIMD instructions that perform 
some arithmetic in parallel), the AO generator will produce 
code that looks like 

for (i=0; i < m; i++)   /* Version 1 */  
    {im1=i-1; ip1= i+1;  
        for (j=0; j < n; j++) 
             { if(i==0 || j==0 || i==m-1 || j==n-1) /* Off edge */ 
   then b[i, j] = 0; 
   else {  jm1= j-1; jp1 = j+1; 
  t1 = a[im1, jm1] * (-1) + a[im1, j] * (-2) +  
         a[im1, jp1] * (-1) + a[ip1, jm1] *1 +  
         a[ip1, j] * 2 + a[ip1, jp1] * 1; 
  t2 = a[im1, jm1] * (-1) + a[i, jm1] * (-2) +  
         a[ip1, jm1] * (-1) + a[im1, jp1] *1 +  
         a[i, jp1] * 2 + a[ip1, jp1] * 1;  
  b[i, j] = sqrt(t1*t1 + t2*t2 )}}} 

This result requires 92 large grain transformations and 
is produced in a few tens of seconds on a 400 MHz 
Pentium. This is not particularly fast at the moment but 
redesigning the implementation data structures should 
reduce generation time to somewhere near the range of 
optimizing compiler times. In any case, the AO generator 
can write the code a good deal faster than I can. 

In contrast, if the machine architecture is specified to 
be MMX, the resultant code is quite different: 

{int s[(-1:1), (-1:1)]={{-1, 0, 1}, {-2, 0 , 2}, {-1, 0, 1}};/* Version 2 */ 
int sp [(-1:1), (-1:1)]={{-1, -2, -1}, {0, 0, 0}, {1, 2, 1}}; 
for (j=0; j < n; j++) b[0,j] = 0 ;         /*Zero image edge */ 
for (i=0; i < m; i++) b[i,0] = 0 ;        /*Zero image edge */ 
for (j=0; j < n; j++) b[(m-1),j] = 0 ;  /*Zero image edge */ 
for (i=0; i < m; i++) b[i,(n-1)] = 0 ;  /*Zero image edge */ 
{ for (i=1; i < (m-1); i++)                 /*Process inner image */ 
  { for (j=1; j < (n-1); j++)  
      {t1 = unpackadd(padd2(padd2 (pmadd3 (&(a[i-1, j-1]),  

           &(s[-1, -1])) ,  
             pmadd3 (&(a[i, j-1]),  

          &(s[ 0, -1]))),  
                pmadd3(&(a[i+1,j-1]),&(s[ 1, -1]))); 
        t2 = unpackadd(padd2 (pmadd3 (&(a[i-1, j-1]),  

&(sp [-1, -1])) ,  
                pmadd3 (&(a[i+1, j-1]),  

&(sp [ 0, -1]))) ) ); 
        b[i,j] = sqrt(t1*t1 + t2*t2);}}} 
where the routines unpackadd, padd2 , and pmadd3 
correspond to MMX instructions and are defined as pmadd3 
((a0, a1, a2) , (c0, c1, c2)) = (a0*c0+a1*c1, a2*c2 +0*0), 
padd2 ((x0, x1) , (x2, x3)) = (x0+x2, x1+x3), pmadd3 ((a0, 
a1, a2) , (c0, c1, c2)) = (a0*c0+a1*c1, a2*c2 +0*0), and 
unpackadd((x0, x1)) = (x0+x1). All lend themselves to 
direct translation into MMX instruction sequences. In this 
example, s and sp have become pure data arrays to optimize 
the use of the MMX instructions. Notice, that the special 
case that tests to see if the template is hanging over the 
edge of the image, has completely disappeared. 
Transformations have split the main loop on that test, 
turning the single loop of the previous version into five 
loops. Four loops plug zeros into the four edges of the 

image (i.e., the new form of the special case processing) 
and one loop processes the inside of the image (i.e., the 
non-special case processing). The fundamental difference 
in the derivation of the two versions is in the tag driven 
optimization phase. Up to that stage, the transformations 
that fire are the same, resulting in two programs that are the 
same except for the tags.  

4.2 Operation 
How does the AO generator accomplish this? The 

generator is a multi-phase, transformation system. The 
early phases use pattern-directed transformations (i.e., 
transformations that trigger based on AST patterns) to 
translate the high level operands into lower level 
conventional programming constructs. For example, these 
transformations will refine images into pixels, pixels into 
channels, and channels into integers. In the course of this, 
they reason over the domain specific information to create, 
place, move, and fuse the looping constructs implied by the 
various operators. These loop creation transformations 
encode loop information as tags that are attached to AST 
expressions, moved over the AST and merged based on the 
semantics of the AST expressions involved. [2] These early 
stage transformations may also perform opportunistic 
optimizations. For example, in the convolution example 
above, a pattern-directed transformation recognized that the 
expressions (a ⊕⊕ s)2 and (a ⊕⊕ sp)2 allow a reduction in strength 
optimization to (t1 * t1) and (t2 * t2) , if the temporary 
assignments t1 =(a ⊕⊕ s) and t2 =(a ⊕⊕ sp) are created and moved 
out of line.  

The later phases use tag-directed transformations to 
reorganize the program for high performance. The tags 
trigger transformations that incorporate operator definitions 
(e.g., the convolution operator and calls to the methods of s 
and sp), reorganize the resulting forms (e.g., move a loop 
into an if-then-else), and simplify the resulting code. These 
reorganizations may cause optimization events (e.g., a 
substitution event) that further trigger event-based 
transformations, i.e., via the mechanism of tags with 
explicit triggering conditions. These may cascade to 
completely reorganize the program. For example, 
substitution of the convolution operator definitions in the 
earlier example starts a cascade of transformations. It 
moves the neighborhood loop into the then and else legs of 
the if-then-else expression that computes the weights, 
moves the multiplication of the a[i,j] pixel into the then and 
else legs (recursively), and triggers constant folding that 
reduces the loop in the then leg to zero. [3] 

Tags may be added at any time. Some are pre-
positioned on reusable library components (e.g., on the 
definition of the convolution operator) in anticipation of 
potential optimizations. For example, the programmer of 
the reusable library might add the tag 

(_On SubstitutionOfMe (_PromoteConditionAboveLoop ?piter ?qiter)) 
 



 

to the special case test within the definition of W of s and sp 
because he knows that the conditional expression of the if 
statement will not depend on the indexes of the inner most 
convolution loops. This tag is conditioned upon the 
optimization event “SubstitutionOfMe” which means that the 
transformation  _PromoteConditionAboveLoop will only get 
triggered when the if statement to which the tag is attached 
gets substituted in the AST.  

Tags are also added and deleted by other 
transformations in the course of generation. 
Transformations may discover knowledge fleetingly in the 
midst of their computation that suggests a candidate 
optimization. For example, the reduction in strength 
transformation describe above anticipates the likelihood 
that the data flows it introduces can be re-manipulated to 
enable constant folding when certain optimization events 
occur. Such knowledge is captured by adding a tag such as:  

(_On MigrationOfMe (_CheckFoldFlows)) 

which will cause the _CheckFoldFlows transformation to be 
triggered if the subtree to which the tag is attached gets 
moved4.  

Tags capture knowledge that is not easily derivable 
from the AST patterns or from operator or operand 
semantics. These are usually properties that would require 
some deep inference, some sense of the optimization 
opportunities particular to the evolving program or some 
knowledge that is fleetingly available in the course of 
transformation execution.  

4.3 A Tag-Directed Transformation Scenario 
This section will overview the tag-driven 

reorganization that produces the non-MMX version of the 
example. The pattern-directed phases of AOG perform loop 
introduction, placement and fusion. In the course of that, 
they may also perform some opportunistic optimizations 
(e.g., reduction in strength of the square operator). This 
phase of AOG is described elsewhere [2] and we will not 
consider it further here. At the end of the pattern-directed 
phases, the example has the following form expressed in a 
C-ish pseudo-code. 

for (i=0; i < m; i++)    
      for (j=0; j < n; j++) 
             { t1 = ( a[i,j] ⊕  ⊕ s); 
               t2 = (a[i,j] ⊕⊕ sp); 
               b[i,j] = sqrt(t1*t1 +  t2*t2)  } 
This expression gets transformed as follows: 

The start of the tag-directed phases triggers inlining of the 
definition of ⊕⊕  in the expression (a[i,j] ⊕  ⊕ s). The definition 
contains calls to the methods of s and sp defining the 

                                                        
4 A new event is planned (i.e., SimplificationToConstant) to 
reduce the number of times _CheckFoldFlows is triggered and 
fails before it finally succeeds. 

neighborhood size (prange, and qrange), the relative pixel 
locations (row , col), and the pixel specific weights (w).These 
method definitions of s and sp are recursively inlined. 

The substitution of the w method triggers the tag 
(_PromoteConditionAboveLoop  p q) where p and q are the indexes 
of the neighborhood loop. _PromoteConditionAboveLoop fails to 
meet its enabling condition because it is inside of an 
expression (a[i,j] * …) and so calls _IncorporateContext to try to fix 
the problem, which distributes the expression over the then 
and else clauses. After that, the enabling conditions are met 
and the neighborhood loop too is distributed over the then 
and else branches. When the loop formed on the then 
branch is partially evaluated, it collapses to a constant 0. 
This completes the work of _PromoteConditionAboveLoop.  

The else branch had the tag (_on substitutionofme ( 
_IncoporateContext)) which is triggered causing the expression 
(a[i,j] *  <else leg>) to be rewritten with the (a[i,j] * …) moved 
inside the else branch. _IncorporateContext is recursively 
applied for each embedded if-then-else statement. Partial 
evaluation of resulting expressions reduces results to their 
simplest forms. 

The expression (a[i,j] ⊕⊕ sp) undergoes an analogous set 
of transformations. At this point, each of the two temporary 
variable assignment statements look like: 

(t2 = (if ((i == 0) || (j == 0) || (i == (m - 1)) || (j == (n - 1)))  
            then 0 
            else (_sum (p q)  

          (_member p (_range -1 1)) 
                    (_member q (_range -1 1))) 

         (if ((p  != 0) && (q  != 0))  
then (a[( i + p) , ( j + q)] * p  
else if ((p  != 0) && (q  == 0 ))  

then (a[( i + p) , ( j + q)] *(2 * p )) 
else 0))))) 

where the highest level branching test is there to detect the 
case of the neighborhood hanging partially off the edge of 
the image. At this point, there are no more transformations 
to be triggered, so the system moves to the next stage, 
which is designed to try to share code across the 
subexpressions of the original expression. It does this by 
posting an artificial event naming the stage. 

A tag attached to the outer if-then that is conditioned 
on this event has been waiting. It will call 
_MergeCommonCondition whose objective is to eliminate 
redundant tests by performing the rewrite: 

{ if ?a then ?b else ?c; if ?a then ?d else ?e } 
=>  if ?a then {?b; ?d} else {?c ; ?e} 

The transformation is unable to meet its enabling 
conditions and recognizing why, calls _IncoporateContext to 
distribute the assignments over the relevant then and else 
branches. At this point, the conditions of the ifs can be 
merged. 

Recall from our early discussion, a reduction in 
strength optimization created t1 and t2, and moved the 



 

expressions  out of line. In the course of that rewrite, it 
added tags to the t1 and t2 assignments that trigger an 
optimization (i.e., _CheckFoldFlows) when the right hand side 
of the assignment becomes a constant. If all of the data 
flow and dependency enabling conditions are met, the 
transformation removes the expression b[i,j] = sqrt(t1*t1 +  t2*t2) 
from its current position and copies it into both legs of the 
if-then, from whence the data flows now originate. With 
constant folding, the then branch is transformed from {t1=0; 
t2=0; b[i,j] = sqrt(t1*t1 +  t2*t2)} to b[i,j] = 0. The else branch does not 
qualify for constant folding, so  _CheckFoldFlows performs no 
further manipulation of it. 

No other opportunistic transformations are triggered, 
so the system posts the event signaling the final stage. Its 
job is to achieve in-place simplifications under the 
assumption that the major code movement stages have 
completed their work. For the non-MMX architecture, the 
_UnWrapIfSmallConstant transformation will be triggered twice 
which with partial evaluation will reduce the temporary 
variable assignments to forms like: 

t2 = ( (a[(i + 1) , (j + 1)]  + (a[(i + 1) , j]  * 2) +  
           a[(i + 1) , (j -1)]  - a[(i -1) , (j + 1)] -  

                              (a[(i -1) , j] * 2)   - a[(i  -1) , (j -1)] )  ) 

The final two remaining tags will trigger the 
transformations  _PromoteAboveLoop and _PromoteToTopOfLoop 
which will hoist the code for the common indexing 
expressions to temporary assignments and replace them 
with the temporary variables im1, ip1, jm1, and jp1. 

5 THE SCHEMA LANGUAGE 
5.1 Purpose and Essence of the language 

AOG is built in terms of highly purposeful, large-grain 
programmatic transformations, e.g., transformations that 
create, place, and fuse loops. This design induces a large 
degree of variation in the AST patterns that must be dealt 
with. For example, the _MergeCommonCondition rule discussed 
earlier must account for variations including: two orderings 
for the two if statements, optional else clauses, optional tag 
structures on the overall if as well as its subexpressions, 
and optional forms for leaf structures (e.g., “0” or  “(leaf 0 
(tags ….))” ). To insulate the transformations from this 
variability and thereby reduce their complexity, AOG uses 
a unification-based, Prolog-like schema language in which 
to specify the AST patterns. It thereby allows the 
parameterization of the transformations by logical or 
conceptual schemas. These schemas insulate the 
transformations from the details and variations in the AST 
in much the same way that logical and conceptual schemas 
insulate database management systems from the physical 
details and format variations of databases. As a result, the 
transformations are performing their operations on 
conceptual patterns within the AST thereby reducing the 
case logic within the transformations.  

The schema language [4] is a fully backtracking 
Prolog-like language that performs pattern-matching, 

parameter binding, enabling condition checking, and 
logical inference for the transformations. The schemas are 
first class objects that are created dynamically, stored 
within the AOG’s data structures, and executed by the 
transformations. The schema language provides the major 
Prolog-like operators (e.g., and, or, not, mark, cut, bind, is, 
succeed, fail, prove, and rule definition). It also provides 
operators tailored to the job of generation including 
operators that span sections of an AST, bind the remainder 
of a list, search top-down or bottom-up, rename local 
variables, use dynamically computed variable values as 
patterns, invoke and use rule sets for inference, navigate 
object structures, perform recursive matching, and execute 
arbitrary Lisp expressions. It is fully backtracking thereby 
allowing a schema execution to fail, backup to the last 
choice point and restart with the next choice. This allows 
schema executions to explore all possible bindings in their 
search for a desired match. Schemas are always executed in 
the context of a current position in the AST. Any structures, 
literal data, variables, or matching operations in the schema 
must match the structures, literal data, CLOS objects, and 
atoms at the current point of the AST subtree. 

A schema is fundamentally a pattern of literal data 
with pattern matching and logical operations embedded. 
The style of schema expression is inverse quoting which 
means that literal data is expressed directly whereas 
variables and operations are expressed with some syntactic 
sugar to distinguish them from the literal data. Specifically, 
schema variables5 are symbols preceded by a question 
mark, e.g., ?x. Operator expressions are preceded by a 
dollar sign. For example, the or operator expression $(por ?x 
?y) requires that the value of the variable ?x or the value of 
?y must match the item at the current position in the tree. As 
a further example, the matching operation $(ptest numberp) 
requires that the item matched is a Lisp number. Matching 
is accomplished by unification of schema variables with 
literal data or variables in the AST. This means that if a 
variable is already bound to a value at some earlier point in 
the matching process, then the current item in the AST 
must be that same value or a variable that is bound to that 
value. If a variable is unbound at the time it is matched, 
unification will cause it to become bound to the current 
item in the AST. 

5.2 Application of schemas 
The schema engine is used in a variety of ways within 

the generator. For example, many of generator 
computations exhibit a stereotypical pattern. They fetch the 
schema value from some slot in a CLOS object 

                                                        
5 We must distinguish these pattern or schema variables 
(e.g., ?x) from the variables in the target program (e.g., x). 
Pattern variables exist only at generation time and their 
values are often target program variables or expressions 
that will become part of the target program. 



 

representing an operator or operand (e.g., the 
backwardconvolution operator of Figure 1), execute that 
schema, and then use the resultant bindings to direct the 
subsequent computation. For example, when selecting a 
particular pattern-directed transformation to run, they 
execute the schema in the slot representing the current 
translation stage (e.g., the fusion2 or fusion3 slots in Figure 
1)6. If successful, the resultant bindings name the 
transformation to be run (e.g., the backwardconvolutiononleaves 
or reduceconvolutionoperator slots in Figure 1). Similarly, when 
selecting refinements for operator or method expressions 
(e.g., calls to the W, Row, or Col methods of s or sp), the slot 
of s or sp containing the replacement for the operator or 
method expression is determined by executing a schema in 
the formals slot of s or sp.  In addition to providing the slot 
name containing the refinement, the schema execution also 
determines what bindings should be applied to that 
refinement before it is substituted 

Schemas are also used in a variety of other ways. For 
type inference, a schema in the operator’s definition (in the 
infertype slot) is run and the result is the inferred type bound 
to the pattern variable ?itype. Additionally, schemas are used 
1) to search over the expression AST to find tags that will 
trigger transformations, 2) to do some lightweight 
reasoning about the programs, and 3) to recognize 
expressions to be simplified by the partial evaluator. 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 The Reusable Components 
The code for some operators must be generated 

dynamically (e.g., most loops) but some can be statically 
defined a priori when their arguments have been refined to 

                                                        
6 Only the top few levels of the list structures are shown in 
Figure 1. The elided portions are indicated by the “#” 
symbol. Schema values are shown as “(*pat* (lambda (…) …)” 
which is the compiled form of “$(oper …)” expressions. 

implementation levels (e.g., the ⊕ ⊕ operator applied to 
implementation level pixels). For example, the ⊕ ⊕ operator 
applied to an integer array that is the implementation form 
of an image and a template type that is the implementation 
form of a neighborhood description is defined by the 
arrayelementXtemplate method of the ⊕ ⊕  operator: 

(DefComponent  arrayelementXtemplate      
   (#.BackwardConvolutionOp #.ArrayReference  

#.TemplateReference) 
   (_Sum (?p ?q)  
      (_SuchThat  
        (_Member ?p  
              (PRange ?template  (aref ?aname ?iter1 ?iter2)  

         ?plow ?phigh ?p)) 
       (_Member ?q  

         (QRange ?template (aref ?aname ?iter1 ?iter2)  
         ?qlow ?qhigh ?q))) 

      (* (aref ?aname  
   (row ?template (aref ?aname ?iter1 ?iter2) ?p ?q) 

    (col ?template (aref ?aname ?iter1 ?iter2) ?p ?q)) 
           (w ?template (aref ?aname ?iter1 ?iter2) ?p ?q)) 
      (tags (_On CFWrapUpEnd (_UnWrapIfSmallConstant (?p)  

               (abs (- ?plow ?phigh))))  
(_On CFWrapUpEnd (_UnWrapIfSmallConstant (?q)  

               (abs (- ?qlow ?qhigh))))))) 

where the parameters BackwardConvolutionOp, ArrayReference, and 
TemplateReference are schema patterns defined elsewhere (see 
[4]) that respectively match the CLOS definition of the ⊕⊕ 
operator (i.e., the CLOS object of Figure 1), an integer 
array reference (e.g., a [i,  j] which is expressed in the AST as 
(aref a i j)), and a template abstraction (e.g., s). This 
arrayelementXtemplate definition is the canonical form for 
the convolution’s inner loop that computes the convolution 
value for the neighborhood around some pixel ?aname[?iter1, 
?iter2]. Notice that the tags in this definition anticipate the 
unwrapping of the loops controlled by ?p and ?q if the 
expression “(abs (- ?plow ?phigh))” is a small constant for some 
definition of small. The variables ?plow and ?phigh are the 
upper and lower range values of ?p and will be bound by 
the TemplateReference pattern. The transformation 
_UnWrapIfSmallConstant will be triggered when the event 
CFWrapUpEnd is posted by the generator. Such events are 
used to sequence stages of the tag-driven process. 

Defcomponent or-s a doctored version of the 
parameter list schema onto the schema value already in the 
formals slot of the BackwardConvolutionOp object7 of Figure 1 
and stores the body of the definition in the 
arrayelementXtemplate  slot. Thus, the formals slot contains a 
pattern that when matched to an AST structure will 
determine which method (if any) is applicable and what 
AST values should be bound to the pattern variables such 
as ?aname, ?iter1, ?iter2, etc. 

The neighborhood s is defined in terms of the methods 
PRange, QRange, Row, Col, and W that respectively compute the 
ranges for the row and columns, the row and column 
                                                        
7$(por  ParmlistPattern  (formals BackwardConvolutionOp)) 

Figure 1  - Definition of the ⊕ ⊕  Operator  



 

indexes and the weights associated with each pixel of the 
neighborhood. Example definitions are: 

(Defcomponent Row (s #.ArrayReference ?piter ?qiter) 
   (+ ?iter1 ?piter)) 
 
(Defcomponent W (s #.ArrayReference ?piter ?qiter)  
   (if (or (== ?iter1  ?i1low) (== ?iter2  ?i2low)  
           (== ?iter1 ?i1high) (== ?iter2 ?i2high))  
       (then 0) 
       (else (if (and (/= ?piter 0) (/= ?qiter 0))  
      (then ?qiter) 
      (else (if (and (== ?piter 0)   (/= ?qiter 0))  
                    (then (* 2 ?qiter)) 

   (else 0))) 
     (tags (_On SubstitutionOfMe  

(_IncorporateContext))))) 
       (tags (_On SubstitutionOfMe  

         (_PromoteConditionAboveLoop ?piter ?qiter)) 
  (_On CFWrapUp (_MergeCommonCondition)))))  

Not all parameters are explicitly acquired from the 
argument list. The ArrayReference pattern matches ?aname[?iter1, 
?iter2] and then navigates via object relationship links to get 
the range values [?i1low : ?i1high]  and [?i2low : ?i2high] 

defined for  ?iter1 and ?iter2. Analogous to the ⊕⊕ operator, s 
is represented as a CLOS object. As with the definition of 
the ⊕⊕ operator, Defcomponent or-s a doctored form of each 
parameter list onto the existing schema in the formals slot of 
s and stores the bodies in slots Row, Col and W of s.  

Notice that W’s definition anticipates several kinds of 
optimizations to be tried whenever the tagged expressions 
get substituted into a different expression. For example, the 
substitution of W’s body will trigger the 
_PromoteConditionAboveLoop transformation. 

These defcomponents are conceptually analogous to what 
the transformation community would call forward 
refinements and would represent in a rule form like  

(Row  s #.ArrayReference ?piter ?qiter) => ( + ?iter1 ?piter) 

The key difference is that such forward refinement rules are 
often global and more general in form (e.g., the pattern 
might contain a variable in place of s). This increases the 
opportunities for them to be applied at inappropriate points 
thereby exploding the search space. Defcomponent 
localizes such rules to specific abstractions (e.g., s) thereby 
allowing them to be considered only when their associated 
abstractions are being processed. This reduces the search 
space explosion. 

6 CONTRIBUTIONS 
AOG make several contributions. It uses tag-driven 

transformations to exploit knowledge and operations that 
are ill suited to pattern-directed transformations thereby 
allowing planning in the problem domain and optimization 
execution in the programming and optimization domains. It 
stages transformation phases so that each is organized to 
achieve a narrowly defined translation or optimization 
purpose. It provides event-driven tags that allow for 
opportunistic optimizations as well as for interdependent, 

anticipated optimizations that can be organized on a time 
line to assure their consistent application. It reasons over 
the domain specific operators and operands early in the 
translation process to produce tags that can thereby take 
advantage of that domain specific knowledge later in the 
optimization process when, conventionally, all of the 
domain specific knowledge would have been translated 
away. It localizes pattern-directed transforms and 
component definitions to specific abstractions within an 
inheritance hierarchy thereby reducing the opportunity for 
them to explode the search space by being applied in 
inappropriate situations. It uses a schema language to 
insulate the transformations from the physical details and 
variations in the AST. 

7 RELATED RESEARCH 
This work bears the strongest relation to Neighbors 

work. [8] The main differences are 1) the fact that the AOG 
pattern-directed transformations are organized into an 
inheritance hierarchy which guides the choice of which 
transformations to try, and 2) the use of the tag-directed 
approach for program optimization. Neighbors uses 
pattern-directed transformations during his optimization. 

The work bears a strong relationship to Kiczales' 
Aspect Oriented programming at least in terms of its 
objectives but the optimization machinery appears to be 
quite different. [7] Kiczales' optimization mechanism 
seems not to be distributed over the AST and the 
optimization algorithms do not appear to be manipulated by 
the transformations. In contrast, the AOG’s tags are 
distributed over the program and they undergo 
transformations as the generator reasons about the domain, 
the program, and the optimization tags. 

This work is largely orthogonal but complementary to 
the work of Batory. [1] Batory optimizes his type equations 
to  choose the optimum components from which to 
assemble classes and methods. AOG inlines and 
interweaves the bodies of methods invoked by 
compositions of method calls (i.e., expressions). Thus, 
Batory’s generation focus is at the class level and AOG’s is 
at the instance level. For details of the relationship see [4]. 

AOG and Doug Smith's work are similar in that they 
make heavy use of domain specific information in the 
course of generation. [9] They differ in the machinery used. 
Smith's work relies more heavily on inference machinery 
than does AOG. The reasoning that AOG does is narrowly 
purposeful and is a somewhat rare event (e.g., the 
transformation that splits the loop in the MMX example 
above does highly specialized reasoning about loop limits). 
However, partial evaluation (a form of inference) is heavily 
used in AOG, which is how three level if-then-else 
expressions (which are interweavings of the definitions of 
W, Row, Col and BackwardConvolutionOp) get reduced to 
expressions like "a[im1, j] * (-2)". 



 

The organization of the transformations into goal 
driven stages is similar to Boyle’s TAMPR [5]. However, 
Boyle does not use tags. 

The schema language is most similar to the work of 
Wile [11, 12] and Crew [6]. Popart leans more toward an 
architecture driven by compiling and parsing notions. As 
such, it is influenced less by logic programming. On the 
other hand, ASTLOG is more similar to the AOG schema 
language in that it is heavily influenced by logic 
programming. However, ASTLOG’s architecture is driven 
by program analysis objectives and is not really designed 
for dynamic change and manipulation of the AST. It 
assumes that its target is a set of link files produced by a 
compile and link operation, thereby producing a batch-
oriented model of AST manipulation. Such a model is not 
well suited to dynamic manipulation and change of the 
AST under the control of a transformation-based generator.   

There are a variety of other connections that are 
beyond the space limitations of the paper. For example, 
there are relations to metaprogramming [12], logic 
programming based generation, formal synthesis systems 
(e.g., Specware) [10], deforestation and other procedural 
transformation systems (e.g., Refine). The differences are 
greater or lesser across this group and broad generalization 
is hard. However, the most obvious general differences 
between AOG and most of these systems is AOG’s use of 
transformations that operate in the optimization problem 
domain and are triggered based on optimization-specific 
events. Additionally, the AOG control structure is unusual. 
The overall optimization process behaves like an abstract 
algorithm where the algorithmic steps are stages and where 
the details of the steps (i.e., what operations are performed, 
what part of the AST they affect, and when they get called) 
are determined by tags on the AST itself. In addition, the 
event driven transforms behave like interrupts that allow 
for operations whose invocation details cannot be planned 
in advance and whose effect is largely simplification. 

8 CONCLUSIONS 
AOG is being developed to study of the effects of 

architectural variations on programming leverage, 
variability, performance, and search space size. While still 
early, it has demonstrated that some operators and types 
can be deeply factored to allow highly varied re-
compositions while simultaneously allowing the generation 
of high performance code without huge search spaces. It 
suggests that one day it may be possible to simultaneously 
achieve the mutually antagonistic goals of high 
programming leverage, high variability, adequate 
performance and small search spaces. 
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