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Abstract 

Defining domain specific abstractions for generator systems leads to a quandary between choosing 
abstractions that exhibit powerful programming amplification through the combinatorial opportunities 
provided by composition, and choosing abstractions that can be easily transformed into high performance 
code. Most generation systems opt for high levels of abstraction to achieve programming amplification and 
as an added benefit get safety, understandability, and several other -ilities. As a consequence, the 
performance of their generated code is often compromised. My hypothesis is that a new generator 
architecture is needed to achieve both high levels of abstraction and high performance code. A generator 
based on such an architecture has been implemented in Common LISP. It is called the Anticipatory 
Optimization based generator because it allows the component and transform writers to anticipate the 
kinds of optimization opportunities that might arise and to prepare an abstract, distributed plan that 
attempts to achieve them. Based on a small number of examples that we have tested, the approach appears 
promising, allowing high levels of abstraction, flexibility, and performance. (See Biggerstaff98a-b.) 
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1 Background 

Program generators compile high level, compact, (and usually domain specific) languages into 
conventional programming languages like C or Java thereby improving programming 
productivity, code safety, ease of understanding, and so forth. The same properties that make 
such domain specific language (DSL) representations appealing make compiling them into high 
performance code difficult. The performance problems arise because DSLs tend to delocalize 
performance related elements of the target code and introduce high levels of redundancy into the 
target code. The various approaches to optimizing the generated code (e.g., conventional 
optimization, optimizing transformations, specialization, etc.) all have practical problems (e.g., 
huge search spaces) that call into question their feasibility. 

 2 Position 



The hypothesis of this paper is that a new architecture for generators is required to overcome this 
problem in a practical way. The essential feature of this new architecture is the ability to attach 
tags to any element of the Abstract Syntax Tree (AST) that represents a DSL expression and use 
those tags to optimize the generated code. The tags can be thought of as mostly a distributed 
optimization plan, but they also include translation status information (e.g., inferred types). The 
generator both manipulates the tags (i.e., reasons about the tags, the domain information, and the 
program constructs) and eventually executes them by calling the optimizing transformations 
associated with them (e.g., the PROMOTECONDITIONABOVELOOP transformation, which 
tries to move a condition test outside of a loop). Through this tag driven optimization process 
delocalized code gets relocalized and redundant code gets shared. Some tags depend on 
optimization events (e.g., substitution of a tagged expression) for their triggering condition, 
which may, in turn, trigger a whole cascade of other opportunistic transformations. 

3 Approach 

3.1 Example 

An example of a domain specific programming expression is illustrated by expression for Sobel 
edge detection in bitmapped images.  

Dsdeclare image a, b form ( array m n) of bwpixel;  

b = [ (a ⊕⊕ s)2 + (a ⊕⊕ sp)2]1/2 ; 

where a and b are (m X n) grayscale images and ⊕ is a convolution operator that applies the 
template matrices s and sp to each pixel a[i,j] and its surrounding neighborhood in the image a to 
compute the corresponding pixel b[i,j] of b. s and sp are OO classes that define the specifics of the 
pixel neighborhoods (i.e., the neighborhood sizes and shapes, the weights to be associated with 
each position in the neighborhood, and any special processing such as the special case when s or 
sp are hanging off the edge of the image). The convolution operator iterates over the image a 
performing a sum or products of a[i,j] and all of its neighboring pixels. The neighborhoods are 
defined by s and sp. For this example, they are defined as  

s [(-1:1), (-1:1)] = {{-1, 0, 1}, {-2, 0 , 2}, {-1, 0, 1}} and  

sp [(-1:1), (-1:1)] = {{-1, -2, -1}, {0, 0, 0}, {-1, -2, -1}}. 

For a single CPU Pentium machine without MMX instructions (which are SIMD instructions 
that perform some arithmetic in parallel), the AO generator will produce code that looks like 
for (i=0; i < m; i++)   /* Version 1 */  
 {im1=i-1; ip1= i+1;  
  for (j=0; j < n; j++) 
   { if(i==0 || j==0 || i==m-1 || j==n-1) /*Off edge*/ 
   then b[i, j] = 0; 
   else { jm1= j-1; jp1 = j+1; 
    t1 = a[im1, jm1] * (-1) + a[im1, j] * (-2) +  
     a[im1, jp1] * (-1) + a[ip1, jm1] *1 +  
     a[ip1, j] * 2 + a[ip1, jp1] * 1; 
    t2 = a[im1, jm1] * (-1) + a[i, jm1] * (-2) +  
     a[ip1, jm1] * (-1) + a[im1, jp1] *1 +  
     a[i, jp1] * 2 + a[ip1, jp1] * 1;  



    b[i, j] = sqrt(t1*t1 + t2*t2 )}}} 

This result requires 62 large grain transformations and is produced in a few tens of seconds on a 
400 MHz Pentium. I believe that most of this time is due to the experimental nature of the 
implementation. By redesigning the implementation data structures, some search algorithms that 
are exponential in the height of the expression tree will become constant time operations (i.e., a 
single pointer dereference) and I expect that this will drop the generation times near the range of 
optimizing compiler times. In any case, the AO generator can write the code a good deal faster 
than I can. 

In contrast, if the machine architecture is specified to be MMX, the resultant code is entirely 
different from version 1: 
{int s[(-1:1), (-1:1)]={{-1, 0, 1}, {-2, 0 , 2}, {-1, 0, 1}};/* Version 2 */ 
int sp [(-1:1), (-1:1)]={{-1, -2, -1}, {0, 0, 0}, {-1, -2, -1}}; 
for (j=0; j < n; j++) b[0,j] = 0 ; 
for (i=0; i < m; i++) b[i,0] = 0 ; 
for (j=0; j < n; j++) b[(m-1),j] = 0 ; 
for (i=0; i < m; i++) b[i,(n-1)] = 0 ; 
{ for (i=0; i < m; i++)  
 { for (j=0; j < n; j++)  
  {t1 = UNPACKADD(PADD2 (PADD2 (PMADD3 (&(a[i-1, j-1]), &(s[-1, 
-1])) ,  
      PMADD3 (&(a[i, j-1]), &(s[ 0, 
-1]))),  
     PMADD3 (&(a[i+1,j-1]), &(s[ 1, -1]))); 
  t2 = UNPACKADD(PADD2 (PMADD3 (&(a[i-1, j-1]), &(sp [-1, -1])) 
, PMADD3 (&(a[i+1, j-1]), &(sp [ 0, -1]))) ) ); 
  b[i,j] = sqrt(t1*t1 + t2*t2);}}} 

Where the functions UNPACKADD, PADD2 , and PMADD3 correspond to MMX instructions 
and are defined as PMADD3 ((a0, a1, a2) , (c0, c1, c2)) = (a0*c0+a1*c1, a2*c2 +0*0), PADD2 
((x0, x1) , (x2, x3)) = (x0+x2, x1+x3), PMADD3 ((a0, a1, a2) , (c0, c1, c2)) = (a0*c0+a1*c1, 
a2*c2 +0*0), and UNPACKADD((x0, x1)) = (x0+x1). All lend themselves to direct translation 
into MMX instruction sequences. s and sp have become pure data arrays to optimize the use of 
the MMX instructions. Notice, that the special case test (i.e., is the template hanging over the 
edge of the image?) has completely disappeared. Transformations that perform simple inferences 
have split the main loop on that test turning the single loop in the previous version into five 
loops. Four loops plug zeros into the four edges of the image (i.e., the new form of the special 
case processing) and one loop processes the inside of the image (i.e., the non-special case 
processing). The fundamental difference in the derivation of the two versions is in the tag driven 
optimization phase. Up to that stage, the transformations that fire are exactly the same. The form 
of the target program in the two cases just before tag driven optimization is exactly the same 
except for the tags. 

3.2 Operation 

How does the AO generator accomplish this? The generator is a multi-phase, transformation 
system. The early phases use pattern directed transformations (i.e., transformations that trigger 
based on code patterns) to translate the high level operands into lower level conventional 
programming constructs. For example, these transformations will refine images into pixels, 
pixels into channels, and channels into integers. In the course of this, they also create, place, and 



fuse the implied looping constructs. These transformations may also perform opportunistic 
optimizations. For example, in the convolution example above, a pattern directed transformation 
recognized that the expressions (a ⊕⊕ s)2 and (a ⊕⊕ sp)2 allow a reduction in strength optimization 
to (t1 * t1) and (t2 * t2) , if the temporary assignments t1 =(a ⊕⊕ s) and t2 =(a ⊕⊕ sp) are created 
and moved out of line.  

The later phases use tag directed transformations (i.e., transformations that trigger based on tags 
attached to the program) to incorporate operator definitions (e.g., the convolution operator and 
the methods of s and sp), reorganize the resulting forms, and simplify the resulting code. These 
reorganizations may cause optimization events (e.g., substitution of a subtree) that further trigger 
event-based transformations, i.e., tags with explicit triggering conditions. These may cascade to 
completely reorganize the program. For example, substitution of the convolution operator 
definitions in the earlier example starts a cascade of transformations. It moves the neighborhood 
loop into the then and else legs of an if-then-else expression that computes the weights, moves 
the multiplication of the a[i,j] pixel into the then and else legs (recursively), and triggers constant 
folding that reduces the loop in the then leg to zero. 

These tags may be pre-positioned on reusable library components (e.g., on the definition of the 
convolution operator) in anticipation of potential optimizations. They are also added and deleted 
by other transformations in the course of generation. 

4 Comparison 

This work bears the strongest relation to Neighbors work. The main differences are 1) the fact 
that the AO pattern directed transformations are organized into an inheritance hierarchy which 
guides the choice of which transformations to try, and 2) the use of the tag directed approach to 
program optimization. Neighbors uses pattern directed transformations during his optimization 
phases. 

The work bears a strong relationship to Kiczales' Aspect Oriented programming at least in terms 
of its objectives. The optimization machinery appears to be quite different in the two approaches. 
Kiczales' optimization mechanism seems to be centralized and the optimization algorithm itself 
does not appear to be manipulated by the transformations. In contrast, the AO generator's tags 
are distributed over the program and they undergo many transformations as the generator reasons 
about the domain, the program, and the optimization tags. The tags come and go during the 
execution of both types of transformations although the pattern directed transformations 
manipulate them more frequently and purposefully than the tag directed transformations do.  

The work is largely orthogonal and complementary to the work of Batory. However, both make 
strong use of domain specific components and information in the course of their operation. 

The AO generator and Doug Smith's work are similar in that they make heavy use of domain 
specific information in the course of generating code. They differ in the machinery used. Smith's 
relies much more heavily on inference machinery than does AO. The reasoning that AO does is 
narrowly purposeful and is a somewhat rare event (e.g., the transformation that splits the loop in 
the MMX example above does highly specialized reasoning about the loop limits). However, 
partial evaluation (a form of inference) is used quite heavily in the AO generator, which is how 
three level if-then-else statements get reduced to expressions like "a[im1, j] * (-2)". 
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