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ABSTRACT 

A person understands a program because he is  able 

to relate the structures of the program and its 

environment to his conceptual knowledge about the 

world. The problem of discovering individual human 

oriented concepts and assigning them to their 

implementation oriented counterparts for a given 

program is the concept assignment problem.  We argue 

that the solution to this problem requires methods that 

have a strong plausible reasoning component based on 

a priori knowledge. We illustrate these ideas through 

example scenarios using an existing design recovery 

system called DESIRE.  

1. Human understanding and the concept 

assignment problem 

A person understands a program when he is able to 

explain the program, its structure, its behavior, its 

effects on its operational context, and its relationships 

to its application domain in terms that are qualitatively 

different from the tokens used to construct the source 

code of the program. That is, it is qualitatively different 

for me to claim that a program "reserves an airline 

seat" than for me to assert that  

 "if (seat = request(flight)) && available(seat) 

 then reserve(seat,customer)."  

Apart from the obvious differences of level of detail 

and formality, the first case expresses computational 

intent in human oriented terms, terms that live in a rich 

context of knowledge about the world. In the second 

case, the vocabulary and grammar are narrowly 

restricted, formally controlled and do not inherently 

reference the human oriented context of knowledge 

about the world. The first expression of computational 

intent is designed for succinct, intentionally ambiguous 

(i.e., informal), human level communication whereas 

the second is designed for automated treatment, e.g., 

program verification or compilation. Both forms of the 

information must be present for a human to manipulate 

programs (create, maintain, explain, re-engineer, reuse 

or document)  in any but the most trivial way.  

Moreover, one must understand the association 

between the formal and the informal expressions of 

computational intent. 

If a person tries to build an understanding of a 

unfamiliar program or portion of a program, he or she 

must create or reconstruct the informal, human oriented 

expression of computational intent through a process of 

analysis, experimentation, guessing and crossword 

puzzle-like assembly. Importantly, as the informal 

concepts are discovered and interrelated concept by 

concept, they are simultaneously associated with or 

assigned to the specific implementation structures 

within the program (and its operational context) that 

are the concrete instances of those concepts. The 

problem of discovering these human oriented concepts 

and assigning them to their implementation instances 

within a program is the concept assignment problem 

[4] and we address this problem in this paper. 

2. The concept assignment problem 

2.1. Programming Oriented Concepts vs. 

Human Oriented Concepts 

A central hypothesis of this paper is that a parsing-

oriented recognition model based on formal, 

predominately structural patterns of programming 

language features is necessary but insufficient for the 

general concept assignment problem. While parsing-

oriented recognition schemes certainly play a role in 

program understanding, the signatures of most human 

oriented concepts are not constrained in ways that are 

convenient for parsing technologies. (See Sidebar on 

Automatic Concept Recognition)  So there is more to 

program understanding than parsing. In particular, 

there is the general concept assignment problem, which 

requires a different approach. 

More specifically, parsing technologies lend 

themselves nicely to the recognition of programming 
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oriented concepts (e.g., numerical integration, searches, 

sorts, structure transformations, etc.), because they are 

easily understood almost completely in terms of the 

patterns of their algorithms (i.e., numerical 

computation and data manipulation steps). 

On the other hand, human oriented concepts such as 

acquire target or reserve airplane seat are decoupled 

from the formal patterns of their algorithms because 

they involve an arbitrary semantic mapping from 

operations expressed on numbers and data structures to 

computational intentions expressed in terms of domain 

concepts (e.g, a target or a seat).  There is no algorithm 

(or, equivalently, no set of inference rules) that allow 

us recognize these concepts with complete confidence.  

Is this difference just a manifestation of a layers of 

abstraction model, in which the higher level 

abstractions are defined in terms of the lower level 

abstractions? Can we 

just write deterministic 

rules relating the 

layers? Observations of 

humans trying to 

understand programs 

suggest that this is not 

the case. It appears that 

there  is truly a 

paradigm shift between 

programming oriented 

and human oriented 

concepts. There is a 

change both in the kind 

of features that must be 

used to recognize the two kinds of concepts and the 

nature of processing required. Programming oriented 

concepts are signaled by the formal features of the 

programming language or other features that can be 

deductively or algorithmically derived from those 

features (e.g., variable liveness or data flow properties) 

while human concept recognition appears to 

additionally use informal tokens, require plausible 

reasoning and rely heavily on a priori knowledge from 

the specific domains. Thus, concept assignment is 

more like a decryption problem than a parsing 

problem. 

In the remainder of the paper, we will give an 

example of this paradigm shift, in which we use a 

priori knowledge to drive the assignment of human 

oriented concepts and focus upon how tools, both naive 

and intelligent, can aid in that process. 

3. An Example 

In trying to assign concepts to code, one has two 

general tasks:  

1) identify which entities and relations are really 

important, and  

2) assign them to known (or newly discovered) 

domain concepts and relations.  

The first task relies heavily on generic formal 

information (e.g., data structures, functions, calling 

relations, etc.) plus some informal information such as 

grouping and association clues. The second task relies 

more heavily on domain knowledge, e.g., knowledge 

of the problem domain entities and typical program 

architectures.  

We consider the example C definitions in Figure 1 

to see how we can identify concepts in code. The 

example is taken from a multi-tasking window system 

[1] written in C. These definitions constitute the set of 

data items necessary to handle breakpoint processing 

within a debugger. We will examine what can be 

plausibly inferred about this set of statements without 

any knowledge of the application domain context (i.e., 

task 1) and then what additional knowledge can 

plausibly be inferred given knowledge of the 

application domain context (i.e., task 2). 

For task 1, we use generic knowledge to infer that 

these statements are related to each other in some non-

casual way, because  

1)  they are grouped together (proximity),  

2)  bracketed with blank lines,  

3)  exhibit a strong surface similarity among many of 

the formal and informal tokens (e.g., breakpoint, 

brkpts, breakcs, etc.), and  

<BLANK LINE> 

  unsigned char brkpts [MAXPROCS] [MAXBRKS];  /*Bytes to be restored at bkpts*/  

  unsigned char *brkat [MAXPROCS] [MAXBRKS];  /*Locations of set break points*/  

  unsigned int nbrkpts [MAXPROCS];               /*Number of breakpoints set for a process*/ 

  int breakpoint;                 /* No of task hitting breakpoint*/  

  unsigned int breakcs, breakip;              /*Address of breakpoint*/ 

  unsigned int breakflags;               /*Flags register value at breakpoint*/ 

  unsigned int breakss, breaksp;              /*Top of stack within breaker routine.  

                 Points to saved registers.*/  

  unsigned int current_ip, current_cs;              /*Current instruction address*/  

<BLANK LINE> 

 

Figure 1  : A Code Example That Illustrates Data Grouping 
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4) exhibit coupling via common tokens among 

several definitions (e.g., coupling via 

MAXPROCS and MAXBRKS).  

Based on these features, we can tentatively assign the 

generic concept data-group to them, indicating that 

taken as a set, they are likely to be an instance of some 

(currently unknown) application domain data concept. 

Further, we expect that this data-group concept is a 

composite of some set of strongly related, detailed data 

subcomponents that are signaled by individual 

programming language tokens defined in the example. 

Presumably, at some time during the recognition 

process, the specifics of which particular application 

data concept we assign will be (plausibly) inferred 

from accumulated evidence.  

For task 2, we assign the data-group and its 

subcomponents to domain specific concepts, utilizing a 

priori domain specific knowledge such as illustrated 

informally in Figure 2. The file drawers represent data 

stores, the ellipses functions, the arrows data/control 

flows and the text blocks other concepts such as 

debugging events. This is a fuzzy model, in that all 

concepts and relationships are weakly constrained, 

thereby allowing the model to cover a wide variety of 

concrete designs. We believe that a person with 

expertise in breakpoint processing must possess a 

model similar to this. 

This model expresses one way in which debuggers 

typically handle breakpoints. That is, when the user 

asks for a breakpoint to be setup at a specific address, 

the original code at that address is saved in the 

debugger's data area and then it is replaced by code that 

will generate an interrupt when executed. That 

interrupt is how the debugger gets control back from 

the program being debugged (i.e., the target program). 

Immediately after regaining control, the debugger 

replaces the interrupt command byte with the original 

target program code, thereby returning the target 

program to its original form. At this point, the user 

would see exactly the same code as he originally wrote, 

which is what he expects. 

How might a knowledgeable user relate this model 

to specific instances of the concepts in a program under 

analysis? What features might he use to make the 

concept assignments? Let us start with the recognition 

of the data store concepts (e.g.,  the Locations of 

breakpoints concept.) 

Features that suggest concept assignments are:  

1) natural language token meanings,  

2) occurrences of closely associated concepts,  

3) individual relations paralleling those in the model, 

and  

4) the overall pattern of relationships 

in the model.  

We illustrate each such feature in our 

example. 

Certain natural language tokens -- 

words, phrases and abbreviations -- are 

features of (i.e., signal a likely reference to) 

the breakpoint-data concept (e.g., 

"breakpoint," "brkpts," and "brkat"), while 

others signal possible references to  

concepts that are closely associated with 

the breakpoint-data concept (e.g, the 

concepts address, registers, instruction, 

process and task). Finding evidence of these 

associated concepts adds evidence to the 

possibility that "breakpoint," "brkpts," 

"brkat" and so forth are indeed signaling a 

reference to the concept breakpoint-data.  

Further evidence might be provided by 

the used_by relations between these data 

items and some previously assigned 

breakpoint processing function(s) (e.g., some known 

breakpoint processing function that uses brkpts, 

breakpoint, brkat or nbrkpts). For example, the user 

might already know about:  

 

LocationsLocations

Code BytesCode Bytes

# Breakpoints# Breakpoints

Setup breakpoints

  command

Save code
bytes & store
    int   3

Restore bytes

at locations

Interrupt

Service

Routine

Interrupt

Event

int 3

int 3

int 3

Target
Program

 

 

Figure 2  : A Model of Breakpoint  

Processing in Debuggers 
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• bpint3, which handles the actual breakpoint 

interrupt;  

• set_breaks & set_brkpt, which together replace 

bytes of target program code with hardware 

interrupt code bytes (i.e., breakpoint interrupt 

bytes) and save the original code bytes in the table 

brkpts and their addresses in brkat;  or  

• restore_breaks and restore_brkpt, which together 

replace the hardware interrupt code bytes with the 

code bytes that were originally in the target 

program before the breakpoints were set.  

If the user has already proposed concept 

assignments to any of these functions (e.g., bpint3), 

then these concept assignments add weight to the 

evolving assignments associated with the data-group. 

On the other hand, the concept assignment could occur 

in the reverse order with breakpoint-data concept 

assigned first. In this case, association of the 

breakpoint-data concept with this data-group would 

serve as evidence for the subsequent concept 

assignments of bpint3, set_breaks, restore_breaks and 

so forth.  

4. Concept Assignment Tools and 

Scenarios  

4.1. Automated Assistance 

Based upon our hypothesis about the underlying 

nature of the concept assignment problem, we have 

built a Design Recovery system called DESIRE [2,3] 

that is designed to be a program understanding 

assistant. DESIRE contains both naive and intelligent 

facilities to assist the user in attacking the concept 

assignment problem. The naive assistant facilities 

assume that the user is the intelligent agent and provide 

simple but computationally intensive services to 

support that intelligence. 

The intelligent assistant facilities include a Prolog-

based inference engine and a knowledge-based pattern 

recognizer called DM-TAO (Domain Model - The 

Adaptive Observer).  These are more experimental and 

attempt to provide a limited amount of intelligent 

assistance in assigning concepts.  

In this section, we will use scenarios to examine 

how such assistant tools can be (and have been) used to 

foster, simplify and accelerate the concept assignments 

in the previous example. 

4.2. Scenario 1: Suggestive Data Names as First 

Clue 

In this scenario, we suppose that a user is browsing 

the global data of some unfamiliar program and 

discovers the breakpoint data group of Figure 1. Let us 

further assume that this user has the domain knowledge 

that is illustrated in Figure 2. Under this scenario, the 

names "brkpts", "brkat" and "nbrkpts" along with their 

associated comments should suggest candidate concept 

assignments. In particular, brkpts is a potential instance 

for the Code bytes data store, brkat for the Locations 

data store and nbrkpts for the # Breakpoints data store.   

The next logical step is to explore the functions that 

use these globals to try to identify the functional units 

Save code bytes ... and Restore bytes ... . Our user 

forms a query that asks for a Germ1 browser view of 

all of the functions that use these global variables along 

with all of the call chains to these functions, resulting 

in the view shown in Figure 3. 

These results reveal several strong candidates 

(set_brkpt, set_breaks, restore_brkpt and 

restore_breaks) for assignment to the save/set and 

restore concepts. He would now examine the source 

code to verify these tentative assignments and 

discovery that the evidence is strong enough to assign 

the two "set" routines to the Save code bytes ... concept 

and the two "restore" routines to the Restore bytes ... 

concept. 

                                                           
1 Germ (Graphical  Entity-Relation Modeller) is a  generalized 

schema driven viewer with a great deal of hypertext functionality. 

 

Figure 3  : Germ View of Use/Call Graph 



CACM Submission 

However, he is still in the dark about the breakpoint 

Interrupt Service Routine and the S

concept, i.e., the user-driven interface 

function that triggers the saving of the 

breakpoints. Since interrupt service routines 

are invoked by the hardware, it would not 

have turned up in the call chains. But 

interrupt routines do communicate with the 

rest of their application via global data. 

Further, our target routine will be related 

(indirectly, perhaps) to the interesting 

functions and global data that we have 

discovered so far. Thus, our user needs a 

way to search for global variables and 

functions loosely related to the current set of 

interesting functions and data. In DESIRE, 

this is accomplished by reques

program slice2 [6] that is based on the set of 

currently interesting program entities.

DESIRE's Slicer does more than generate 

static views. It is a highly interactive tool 

that allows slices to be rapidly generated, 

extended, contracted and shifted based on a (typically 

shifting) set of currently interesting program entities 

called the interest set. It also includes a powerful 

operations for finding and combining interest sets.

In our example, the user might start with an interest 

set that includes the functions and global data so far 

assigned (i.e., restore_brkpt, restore_breaks, set_brkpt, 

set_breaks, nbrkpts, bkpts and brkat) and generate a 

slice based on these interests. Figure 4 shows part of 

                                                          
2Roughly speaking, a slice for a variable is all of the statements 

that affect the value of the variable. There are several variations on 

this available.  

Figure 4 : Slicer's View of Part of mdebug Code
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Further, our target routine will be related 
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functions and global data that we have 

discovered so far. Thus, our user needs a 

way to search for global variables and 

functions loosely related to the current set of 

interesting functions and data. In DESIRE, 

this is accomplished by requesting a 

[6] that is based on the set of 

currently interesting program entities. 

DESIRE's Slicer does more than generate 

static views. It is a highly interactive tool 

that allows slices to be rapidly generated, 

based on a (typically 

shifting) set of currently interesting program entities 

called the interest set. It also includes a powerful 

operations for finding and combining interest sets. 

In our example, the user might start with an interest 

set that includes the functions and global data so far 

assigned (i.e., restore_brkpt, restore_breaks, set_brkpt, 

set_breaks, nbrkpts, bkpts and brkat) and generate a 

re 4 shows part of 

                   

Roughly speaking, a slice for a variable is all of the statements 

that affect the value of the variable. There are several variations on 

the slice generated. 

The slice introduces several new global variables 

because of the conditional branch that leads to the call 

to restore_breaks in mdebug. And all of these new 

global variables play a part in breakpoint processing. 

The flag breakpoint triggers the operation that restores 

the code bytes (i.e., Restore... concept) and the others 

(e.g., breakcs, breakip and breakflags

breakpoint's state. Inclusion of these variables in the 

slice, will also bring in bpint3 

interrupt service routine -- because it uses these global 

variables to communicate with the main part of the 

debugger.  

Elsewhere in mdebug (not shown in diagram), the 

user finds the code that calls set_breaks, and it is 

embedded within logic that interprets the user's debug 

commands. That is, mdebug is the assignment for the 

Setup breakpoint command 

discovery, all of the key concepts have been assigned 

to specific program concepts thereby, providing a 

framework for further detailed analysis of the code, 

involving human interpretation. 

Figure 5 : Germ Browser Call Graph
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The slice introduces several new global variables 

because of the conditional branch that leads to the call 

to restore_breaks in mdebug. And all of these new 

global variables play a part in breakpoint processing. 

triggers the operation that restores 

concept) and the others 

breakflags) are part of the 

breakpoint's state. Inclusion of these variables in the 

slice, will also bring in bpint3 -- the breakpoint 

because it uses these global 

variables to communicate with the main part of the 

Elsewhere in mdebug (not shown in diagram), the 

user finds the code that calls set_breaks, and it is 

gic that interprets the user's debug 

commands. That is, mdebug is the assignment for the 

 concept. With this 

discovery, all of the key concepts have been assigned 

to specific program concepts thereby, providing a 

er detailed analysis of the code, 

involving human interpretation.  

 

Figure 5 : Germ Browser Call Graph 
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4.3. Scenario 2: Patterns of Relationships as 

First Clue 

Another approach to program analysis is 

to try to identify the clusters of related 

functions and data that form an abstract 

overview of the program. We call these 

clusters modules, to distinguish them from 

files, classes, objects, or other formal 

programming language structures.  

How might one go about trying to 

discover such a framework in a language 

such as C? Much of DESIRE's tool set and 

methodology is designed to support the 

identification of such modules. Sometimes 

module clusters depend upon domain 

specific knowledge but often the module 

structures are revealed by more generic 

program features, such as 

• Functions that are coupled by shared 

global variables, or 

• Functions that are coupled by shared 

control paths. 

Suppose that our user is searching for functional 

clusters based on shared control paths, that is a set of 

functions that are tightly bound because all call paths 

to them contain a single function, called the 

Our debugging example contains just such a cluster 

 

Figure 6 : Results of Cluster Analysis
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Scenario 2: Patterns of Relationships as 

Another approach to program analysis is 

to try to identify the clusters of related 

nctions and data that form an abstract 

overview of the program. We call these 

, to distinguish them from 

files, classes, objects, or other formal 

How might one go about trying to 

discover such a framework in a language 

such as C? Much of DESIRE's tool set and 

methodology is designed to support the 

identification of such modules. Sometimes 

module clusters depend upon domain 

en the module 

structures are revealed by more generic 

Functions that are coupled by shared 

Functions that are coupled by shared 

Suppose that our user is searching for functional 

clusters based on shared control paths, that is a set of 

functions that are tightly bound because all call paths 

to them contain a single function, called the dominator. 

Our debugging example contains just such a cluster 

where the dominator is "mdebug." Why might our user 

suspect that this is a cluster? 

Perhaps he notices a suggestive call graph pattern of 

functions that appear connectively isolated except for a 

rich set of connections to mdebug. (See Figure 5.) So, 

our user runs a cluster analysis with mdebug as the 

dominator. The results are shown in 

Figure 6. 

The functions found include the set 

and restore functions from scenario 1, but 

also a number of functions

unassembling machine instructions (e.g., 

unassemble and decode), another set for 

reading and parsing user commands (e.g., 

readcmd and parseaddr) and others for 

dumping information (e.g., dumpwords). 

Further exploration will  suggest 

additional candidates for inclusion based 

on functions that are conceptually related 

to the debugger.  

At this stage, the user asks that this 

clustering relationship be recorded as a 

(new) module and an aggregate node is 

created in the DB. This new module node 

groups these functions so that they can be 

dealt with as a unit. Typically, the user 

will want to simplify some other 

 

Figure 7: Module View of the System
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where the dominator is "mdebug." Why might our user 

Perhaps he notices a suggestive call graph pattern of 

functions that appear connectively isolated except for a 

ch set of connections to mdebug. (See Figure 5.) So, 

our user runs a cluster analysis with mdebug as the 

dominator. The results are shown in 

The functions found include the set 

and restore functions from scenario 1, but 

also a number of functions involved in 

unassembling machine instructions (e.g., 

unassemble and decode), another set for 

reading and parsing user commands (e.g., 

readcmd and parseaddr) and others for 

dumping information (e.g., dumpwords). 

Further exploration will  suggest 

candidates for inclusion based 

on functions that are conceptually related 

At this stage, the user asks that this 

clustering relationship be recorded as a 

(new) module and an aggregate node is 

created in the DB. This new module node 

s these functions so that they can be 

dealt with as a unit. Typically, the user 

will want to simplify some other 

 

Figure 7: Module View of the System 
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graphical view, so he would collapse (i.e., hide) all of 

these functions temporarily inside this new module 

node.  

 The user could proceed with other cluster analyses 

and eventually assign each function to some module. 

This allows him to get an module-based overview of 

the system. See Figure 7. These  cluster results can be 

used in other tools -- the browser, query engine or the 

Slicer.  

It should be clear from these scenarios that concept 

assignment benefits from a wide variety of naive tools 

for viewing, analysis and query. The detailed nature 

and usage of these tools are heavily influenced by the 

style of the investigators. However, the central 

invariant requirement is that the tools provide the 

mechanism for creating opportunistic associations and 

juxtapositions of information. Now, let us show how it 

is possible for the machine to play a more intelligent 

support role. 

4.4. Scenario 3: Intelligent Agent Provides First 

Clue 

Another approach would be for our user to ask DM-

TAO -- DESIRE's experimental intelligent assistant for 

concept assignment -- to scan the code and present a 

list of candidate concepts based on the knowledge 

represented in its domain model (DM) 

knowledge.  The results are used to glean 

a rough sense of the conceptual highlights 

of the code being studied or to serve as 

focal points for further investigation 

using the naive tools described in earlier 

sections.  

The current version of DM-TAO can 

provide several kinds of insights into the 

source code:  

• Conceptual Highlights: Look for all 

instances that correspond to any 

concept in the DM;  

• Conceptual grep: Look for 

instances of a user-specified concept; 

and  

• Identification: Propose a concept 

assignment for the currently selected 

code.  

In our example, the user might start with a search of 

type 1 to perform a broad sweep of the code looking 

for important concepts. This will find breakpoint-

data, DM's name for the model shown in Figure 2. The 

user could then ask to see the specific code associated 

with that concept and TAO would present the code 

from Figure 1 in a window.  At this point, the user may 

need to understand the breakpoint-data concept in 

greater detail and so he selects the line in which brkat 

is declared and asks TAO to suggest a concept 

assignment for the selection (a type 3 query). As shown 

in Figure 8, TAO infers that the selection is an instance 

of the breakpoint-location  concept, which is the DM's 

internal name for the Locations of breakpoints concept. 

This provides the user a place to start further analysis. 

How does DM-TAO accomplish its assignments? 

The distinctiveness of DM-TAO and the problems that 

it attacks merit some elaboration. It uses the DM to 

drive a connectionist-based inference engine (TAO), 

similar to [5]. The DM is built as a 

semantic/connectionist hybrid network in which each 

domain concept (e.g., Locations of breakpoints) is 

represented as a node and the relationships between 

nodes are represented as explicit links (e.g., Save code 

bytes and Locations of breakpoints are related via a 

uses link).  There are a variety of  network node types: 

concept node, feature node, term node, syntax node 

etc., depending on the information being represented. 

The nodes are grouped together into layers. The 

feature, term and syntax nodes form the input layer of 

the network, while the concept nodes are loosely 

organized at different levels of abstraction, generally 

reflecting the conceptual infrastructure of the domain 

model. The different inter-concept relationships are 

represented by corresponding inter-node link types. 

Every link in the system has a real-valued weight 

associated with it, quantifying the strength of the 

relationship between the two nodes connected by it. 

 

breakpoint-location

4/6

proc.h

235-235

 

Figure 8: DM-TAO Suggests Assignment 
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The nodes serve as the processing units of the 

network and generate appropriate signal strengths or 

activation levels as a nonlinear function of the input. 

For most nodes (except the input layer), the input 

signal is a function of the activations generated by the 

connected nodes in the previous layer modulated by the 

weight on the connecting link. Nodes in the input layer 

are directly driven by the actions of a feature-extractor 

which extracts features such as syntax, lexical clues, 

clustering clues etc.  Their activation level is a function 

of the number of corresponding clues found in the 

current target code segment, the degree of the match, 

and the activation history of related feature nodes. The 

signals generated in the input layer are propagated 

throughout the network via a controlled spreading 

activation process, which continues until the concept 

nodes compute their activation levels. If the computed 

output of a concept node is higher than a certain value - 

called the recognition threshold, then the domain 

concept represented by that concept node is predicted 

to be present in the corresponding section of code from 

which the relevant clues were extracted. 

The accuracy of prediction of the network is a 

function of the weights distributed on it's links. The 

system adapts it's response via a 'training' process, 

which modulates these weights according to certain 

rules to obtain an optimal distribution. In DM-TAO, 

the training is effected in two stages: 1) The network is 

initially primed with a priori knowledge from the 

domain model regarding the degree of the association 

between two connected concepts (a qualitative 

assessment of low, medium or high provided by the 

domain builder). 2) The network weights are adjusted 

in a performance driven manner using qualitative 

relevance feedback from the user regarding the validity 

of the tentative concept assignments made by the 

system. 

While DM-TAO has shown promise, it is still 

evolving and very much a research prototype. 

5. Evaluation of DESIRE 

In order to be credible, the evaluation of any system 

meant to assist a user in understanding real programs 

should be performed in a real-world context. 

Consequently, the testing and evaluation of DESIRE 

has always been done with real users.  Even though all 

of the tools discussed here are experimental prototypes, 

they have been in use on real, large-scale programs (of 

up to 220 KLOC) since 1989 by a number of different 

users in several companies. DM-TAO is the one 

exception. It is still a research prototype that we have 

not yet released for use outside the lab. We feel that the 

result is better because of this approach.  

DESIRE was first released to selected users in 

several companies in the spring of 1989. By 1992, it 

had been installed at more than a dozen sites in seven 

companies. The users are what we would characterize 

as early adopters and for the most part are quite self 

sufficient. However, there was still a fairly heavy 

interaction with the users. A dozen or so sites is about 

the limit that a small research group can handle without 

impeding research progress. 

 To date, the use of DESIRE has fallen primarily 

into two classes: 1) exploration for debugging or 

porting and 2) documentation for understanding and 

reporting. The most popular tools for exploration are 

the Slicer, the generic query system and the Prolog 

based analysis system. For documentation, Germ is the 

hands down winner. It is often used for reporting 

passive, artfully tailored views of program structures 

for publication or understanding. 

DM-TAO is nearly complete but is still missing 

several key facilities necessary for doing large-scale 

validation experiments. Consequently, we have been 

limited to small experiments that required a good deal 

of manual labor. These experiments show promise but 

not yet definitive.  

Even though it has some of the weaknesses of a 

research prototype, DESIRE has been used to do real 

work. 

6. Conclusions 

Since the concept assignment problem is an 

obviously hard problem, automation of even a small 

portion of it requires architectures that process a range 

of information types varying from formal to informal 

such that the information inferred from the informal 

can improve the ability to infer information from the 

formal and visa versa. Further, it seems clear from our 

analysis of example code that much understanding 

relies strongly, though not exclusively, on plausible 

inference. Finally, we conclude that deep 

understanding relies on an a priori knowledge base that 

is rich with expectations about the problem domain and 

the typical architectures. 

We are encouraged by the preliminary results of 

DM-TAO. While we believe that the concept 

assignment problem will probably never be completely 

automated, some useful automation is possible. We 

believe that by incorporating those parts that we can 

automate into mixed-initiative systems in which the 

software engineer provides those elements that are 

beyond automation, it is possible to significantly 

accelerate and simplify the understanding of programs. 
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Glossary 

 

Domain Model - A knowledge base that defines 

concepts in a specific application domain (e.g., 

debuggers) as a set of entities and all of their 

interrelationships (e.g., the Uses  relationship between 

the entities Locations of breakpoints and  Save code 

bytes entities). 

Dominator - A procedure or function f is the 

dominator of another procedure or function g if all call 

paths to g go through f. 

Parsing Oriented Recognition Model - A 

recognition strategy that uses of a finite set of pattern 

templates each of which specifies a concept occurrance 

as a set of features. This is a recursive process in which 

the simplest, most elemental concepts are recognized 

first and then these concepts become features of larger-

grained, conposite concepts. 

Recognition Model - The method or architecture 

chosen to perform recognition. 

Signature - The set of features (e.g., syntax, 

semantic, graphical, etc.) that signal the occurance of a 

specific concept pattern. 

Program Slice - A program slice with respect to a 

specific program variable reference is all statements of 

the program that affect the value of that variable at that 

location. 
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Sidebar 1: 

Automatic Concept Recognition 

Concept assignment is a process of recognizing 

concepts within a computer program -- which includes 

all artifactual information associated with the code -- 

and building up an "understanding" or model of the 

program by relating the recognized concepts to 

portions of the program, to its operational context and 

to one another. One of the simplest operational models 

for the concept recognition and understanding process 

is to view it as a parsing process[1,2]. In this view, any 

given concept can be recognized from a specific 

signature (i.e., some pattern of features) within the 

target program. Indeed, many basic Computer Science 

algorithms such as quicksort are amenable to this 

process. The recognizer program uses a finite set of 

pattern templates that recognize the concept signatures 

by a parsing process, where the simplest, most 

elemental concepts are recognized first and then these 

concepts become features of larger-grained, composite 

concepts. A degenerate case of this recognition process 

is the familiar process of parsing programming 

languages for compilation. 

These patterns typically rely almost completely on 

the formal, structure-oriented patterns of features, 

which is largely a result of the nature of the technology 

(namely, parsing technology) that is conveniently 

available to attack this problem. For parsing 

technologies to be effective, they rely heavily upon the 

premise that the concepts to be recognized are 

completely and (mostly) unambiguously determined by 

the formal, structural features of the entity being parsed 

and that these features are contextually quite local 

(e.g., as in context free languages). 

References: 
1. Mehdi T. Harandi and Jim Q. Ning, "Knowledge-Based 

Program Analysis," IEEE Software, Vol. 7, No. 1, 

(January, 1990), pp. 74-81. 

2. Charles E. Rich and Linda M. Wills, "Recognizing a 

Program's Design: A Graph-Parsing Approach," IEEE 

Software, Vol. 7, No. 1, (January, 1990), pp. 82-89 
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Sidebar 2: 

 Related Research and Technology  

There are a variety of technologies that address 

facets of the program understanding problem. The 

approaches taken and facilities included vary widely 

based on the research or technology purpose. A few 

broad (overlapping) categories that are relevant to 

program understanding are: 

Maintenance and Re-engineering:  The forces of 

change (e.g., computer "downsizing") are resulting in 

increased automation supporting program maintenance 

and re-engineering. These tools are variously  focused 

on program reorganizing [7,10],  program porting, or 

database re-engineering  [4]. 

Reusable Component Recovery: Closely related to 

maintenance tools are those aimed at extracting 

reusable information from existing code, either in the 

form of executable components or non-executable 

business rules. [6] 

Program Analysis and Development Aids: The 

development of large-scale systems requires 

increasingly greater levels of tools support for the 

programmer:  

• Search, extraction and condensation of 

explicit, static, and often distributed program 

information, such as provided by query 

systems [1], program slicers, language-aware 

editors, etc.,   

• Computation of implicit program information 

such as provided by module groupings [9] or 

data flow[2, 8], and 

• Generator-based tools with strongly domain-

oriented visual metaphors, clip-art assembly 

methods and hypermedia-like navigational 

aids [5]. 

Documentation and Understanding Aids: 
Documentation tools produce publication-oriented 

projections of concrete program information (e.g., 

browser views and other diagrammatic descriptions) as 

well as more abstracted views such as CASE-oriented 

design views. In addition, expert systems that can 

answer a limited class of questions about a target 

program [3] are beginning to emerge. 

Also see sidebar titled Automatic Concept 

Recognition. 
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