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Abstract - A challenge of many transformation-based generators  is that they are trying to achieve three mutually 

antagonistic goals simultaneously: 1) deeply factored operators and operands to gain the combinatorial programming 

leverage provided by composition, 2) high performance code in the generated program, and 3) small (i.e., practical) 

generation search spaces.  The Anticipatory Optimization Generator (AOG) has been built to explore architectures and 

strategies that address this challenge. The fundamental principle underlying all of AOG’s strategies is to solve 

separate, narrow and specialized generation problems by strategies that are narrowly tailored to specific problems 

rather than a single, universal strategy aimed at all problems. A second fundamental notion is the preservation and 

use of domain-specific information as a way to gain extra leverage on generation problems. This paper will focus on 

two specific mechanisms: 1) Localization: The generation and merging of implicit control structures, and 2) Tag-

Directed Transformations: A new control structure for transformation-based optimization that allows differing kinds 

of retained domain knowledge (e.g., optimization knowledge) to be anticipated, affixed to the component parts in the 

reuse library, and triggered when the time is right for its use. 

Index Terms - Backtracking, domain-specific architectures, image processing, inference engines, logic 

programming, optimization, partial evaluation, pattern matching, program synthesis, reusable software, search, 

program transformations. 

1 Introduction 

1.1 The General Problem 

A serious problem of most pattern-directed, transformation-based program generators is that they are 

trying to achieve three mutually antagonistic goals simultaneously: 1) deeply factored and highly 

abstract operators and operands to gain the combinatorial programming leverage provided by 

compositions of abstractions, 2) high performance code in the generated program, and 3) small (i.e., 

practical) generation search spaces.  Various program generators focus on one or two of these goals 

thereby often compromising the other goal(s). This paper will make the argument that this quandary is 

due in large measure to deficiencies of conventional pattern-directed transformation models. While 
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pattern-directed (PD) transformations (also called rules) make the specification of the transformation 

steps easy and, in fact, often do a pretty good job of refining (i.e., translating) abstractions into code, 

they just as often explode the search space when one is later trying to produce highly optimized code 

from compositions of deeply factored, abstract operators and operands. Since giving up the deep 

factoring of abstractions to reduce the search spaces also gives up the combinatorial programming 

leverage provided by the composition, it is not a good trade-off.  

 

Before addressing the detailed sub-problems and proposing solutions, the next two sections will provide 

a short introduction to PD transformation systems and discuss the nature of the search space explosion 

problem. 

 

1.2 Pattern-Directed Control Regimes 

In the simplest form, generic pattern-directed transformation systems store knowledge as a global soup 

of transformations
3
 represented as rewrite rules of the form

4
  

 

Pattern ⇒⇒⇒⇒ RewrittenExpression 

 

The left hand side of the rule (i.e., Pattern)  matches a subtree of an Abstract Syntax Tree (AST) and 

binds matching elements of that subtree to variables (e.g., ?operator) in the pattern. If successful, the 

right hand side (rhs) (i.e., RewrittenExpression), instantiated with the variable bindings, replaces 

the matched portion of the subtree. A simple, concrete example of such a rule might be a distributed 

law for the arithmetic operators * (i.e., times) and + (i.e., plus): 

?X * (?Y + ?Z) => (?X * ?Y) + (?X * ?Z) 

If this example transformation is applied to the AST expression 

 A * (10 + B) 

                                                           
3
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then the pattern variable ?X would match A, ?Y would match 10 and ?Z would match B and the 

rewritten result would be  

  (A * 10)  + (A * B) 

Operationally, rules are chosen (i.e., triggered) based largely on the pattern of the left hand side, 

thereby motivating the moniker “Pattern-Directed” for such systems. Beyond syntactic forms, rules may 

also include 1) semantic constraints (e.g., type restrictions), and 2) domain constraints that must be true 

before the rule can be triggered. Such constraints are called enabling conditions. The checking of 

enabling conditions and other translation chores (e.g., generating translator variables) are often handled 

by a separate procedure associated with the rule.  

 

One of the key questions with transformation systems is what is the organization and control regimes 

underlying the application of the rules. That is, how is rule storage organized and how are the 

transformations triggered? The question of rule organization will be deferred to a later section but 

triggering issues will be considered here. In general, control regimes are some mixture of two kinds of 

triggering strategies: PD triggering and metaprogram controlled triggering [17, 19, 35, 37, 44]. In its 

simplest implementation, PD triggering produces a control regime that looks like an exhaustive search 

process directed mostly by syntactic or semantic information local to AST subtrees. While PD regimes 

allow easy addition of new rules because rules can be treated as independent atoms, pure PD regimes 

have the problem that the triggering of the rules is based on pattern matching that is largely local to AST 

subtrees. This strategy leads to an overall process that is strategically blind and often induces very large 

search spaces.  

 

On the other hand, the triggering choices may be made by a metaprogram that codifies some strategic 

goal and often employs heuristics to shortcut the search process. Metaprograms [17, 37] are algorithms 

and therefore, have state. This allows them to make design choices based on the earlier successes or 

failures. Their heuristic character, computational purposefulness and use of state information tends to 

reduce the search space over that of a pure PD search. However, the algorithmic rigidity and heuristic 

approach makes extensions more difficult than just dropping in a few new transformations. Also, 

surprise interactions among design choices are less likely with metaprograms than with PD search 

because typically some combinations of design choices have been pruned away in the design of the 

metaprogram. Finally, pruning the search space precludes exhaustive searches and therefore, some 

important answers may be missed. 

 

Nevertheless, both PD rules and metaprograms may lead to searches that tend to explode. Why? The 

short answer is constraint propagation, i.e., separated parts of a generated program must be 



  

  

coordinated in order to produce a correct program.  The next section will look at this problem more 

closely. 

 

1.3 The Constraint Propagation Problem 

Constraint propagation [27] is the process whereby design choices made in one part of the generated 

program must be coordinated with design choices made in other parts of the program. For example, 

suppose that a generator is refining a container abstraction in the target program specification and the 

generator chooses to implement that container as a linked list. Elsewhere in the evolving program, the 

generator will have to choose an implementation algorithm for the container’s search method. Suppose 

that the reusable library used by the generator allows two kinds of searches, sequential and Boyer-

Moore. A Boyer-Moore search is precluded by the previous choice of a linked list implementation 

because for a Boyer-Moore search, the container must have the property that every element of the 

container can be accessed in an equal amount of time. An array has this property but a linked list does 

not. This constraint must be communicated between the two places in the program where these related 

decisions will be made.  

 

Katz and Volper [27] have shown that the problem of finding a consistent set of refinements for a 

program specification is NP complete. Operationally, this means that automating the development and 

optimization programs in the most completely general form is likely to face exploding spaces in the 

search for a consistent set of refinements and optimizations. The remainder of this paper will describe 

strategies and compromises that reduce this search space explosion. 

2 Controlling Search Space Explosions 

2.1 Overview 

A central thesis of this paper is that the constraint propagation problem is best approached by solving 

specialized sub-problems that lend themselves to the use of specialized control regimes and 

metaprograms. Such strategies: 

  

1) Solve narrower, more specific problems that are not NP complete (e.g., the problem of 

generating and integrating “implicit” target program control structures),  



  

  

2) Use transformation control regimes that are customized to those narrower problems (e.g., 

break the overall translation into phases with narrow translation goals and trigger optimizing 

transformations based on event tags that are attached to reusable components
5
),  

3) Employ domain knowledge to further prune the number of search space choices (e.g., use 

domain knowledge to pre-tag reusable components with calls to desirable optimizations),  

4) Limit the area of the program over which constraints must be propagated (e.g., within a single 

Domain-specific Language – DSL – expression), and 

5) Organize the transformations in ways that reduce the number to be tried at any given point 

(e.g., group transforms in a two dimensional space that exposes only a few transforms at each 

point in the translation process). For example, organizing DSL translations into a series of PD 

phases reduces the number of transformations that need to be tried in each phase and thereby 

reduces the number of pattern matches needed. The order of the phases also determines the 

order in which the phase-specific groups of transforms are enabled. 

Some of these strategies have been employed by existing generators (e.g., Draco [32-34] and TAMPR 

[13, 21] employ two notions of phased translation) and some are introduced by the AOG generator [6-

12] (e.g., tagging reusable components with desirable optimizations that are triggered by translation 

events). The remainder of the paper enlarges on these strategies. 

 

2.1.1 Phased DSL to DSL Refinements 

One way to reduce the search space is by employing implicit rule subsetting mechanisms to make 

irrelevant rules invisible in a particular situation. Systems like Draco employ distinct DSLs that can be 

translated in stages from high level DSLs to lower level DSLs and eventually to conventional 

programming languages such as C++ or Java. These distinct DSLs induce an implicit subsetting of rules 

that reduces the search space at each translation stage by hiding rules not relevant to the specific DSL 

constructs being translated.  Thus, refinement – the process of translating from one DSL to lower level 

DSLs and eventually to code – produces a series of small search spaces rather than one large search 

space because at each translation stage only a small number of relevant rules are available to be 

attempted. 

 

2.1.2 Inter-Refinement Optimization Phases 

At each DSL to DSL translation stage, overly complex code is often generated, which explodes the 

number of pattern cases that need to be used in the next translation stage.  Periodic AST expression 

simplification is needed to prevent the rules from becoming so complex that refinement progress is 
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impeded. Program generation often uses a kind of form simplification or specialization that basically 

removes redundant expressions in a DSL (e.g., (X + 0) => X) without attempting any sophisticated 

expression reorganization or extended inference. In AOG, this step is attempted as each new code 

expression is generated in an attempt to keep the expressions as simple and canonical as possible. 

Without this step, subsequent refinement rules become inordinately complex and thereby, explode the 

search space. AOG uses a customized partial evaluator
6
 [25] that is designed to specialize code for which 

some data values have become known (e.g., unrolling a loop will make loop indexes known constant 

values).  

 

What is more, DSL expressions often reveal opportunities to execute certain domain-specific 

optimizations that would be impractical without the domain-specific (DS) vantage point. [32-34]  For 

example, an optimization rule using knowledge of an Augmented Transition Network (ATN) parser 

domain may remove an ATN state (equivalent to removing a parse rule in a conventional parser) and 

thereby make a significant optimization. Such an optimization would be impractical to perform once the 

target program is translated into a conventional programming language because the optimizer would be 

swamped by low-level details and low-level transformations and would no longer have the abstract, 

domain knowledge to guide it. The domain level knowledge provides a view of the “forest” whereas the 

code level provides only a view of the “trees.” Thus, DS knowledge also plays an important role by 

allowing domain-specific optimizations that map from a domain to itself because the rules can use the 

domain knowledge to significantly improve the target computation while the program specification is 

still at an abstract, domain-specific level. Once the abstract, DS level is translated to the conventional 

code, the result of the optimizations can often be seen to be quite sweeping and difficult at that level.   

 

Thus, interlaced between each DSL to DSL refinement stage is a stage that simplifies the generated code 

and applies optimizations specific to the current DSL. 
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2.1.3 Localization 

Domain-specific languages excel at programming productivity improvements
7
 because they provide 

large-grain composite data structures (e.g., a graphics image) and large-grain composition operators 

(e.g., image addition). As a result, extensive computations can be written as APL-like one-line 

expressions that are equivalent to tens or hundreds of lines of code (LOC) when written in a 

conventional language like Java. Refining such expressions step-by-step into programming language 

operators and operands introduces implied control structures (e.g., loops or enumerations) for each 

large grain composite or large grain operator. These implied control structures are distributed (i.e., de-

localized) across an expression of operators and operands. Relationships among these operators and 

operands invite full or partial control structure sharing across a multiple operator expression. Human 

programmers recognize the relation among these distributed control structures and merge them into 

customized control structures that minimize the redundancy of control. For example, while the controls 

implied by each large-grain item in a DSL expression may imply a series of passes over the data, 

customized control structures may be able to perform several operations on large-grain data structures 

in a single pass. This generation of custom control structures from the individual control elements 

implied by the operators and operand that are scattered across a DSL expression is called control 

localization. In AOG, control localization is automated via PD rules. A later section will follow through an 

extended localization example. 

 

2.1.4 Architectural Shaping 

Inter-component (i.e., cross-domain and cross-component) optimization tasks suffer several problems: 

1) they are coordinating remote but related pieces of the target program, 2) they are less influenced by 

local AST patterns than by global optimization goals, and 3) they often cannot be performed until the 

target program has been refined to the programming language domain by which time virtually all DS 

leverage is lost because the DS knowledge has been translated away. Because of these problems, 

conventional PD strategies for such optimization tasks may explode the search space. 

 

These problems arise largely because the generator is trying to establish global operational properties in 

the target program, e.g., trying to optimize the overall code for differing machine architectures while 

starting out with a canonical target program specification and canonical reusable piece-parts. For 

example, one would like to be able to generate code optimized for a non-SIMD
8
 architecture and with 

the flip of a switch generate code optimized for a SIMD architecture. Domain knowledge provides 

unique and valuable information about the computational goals and interrelationships of the program 

parts that can be used to simplify the optimization process. For example, the control structure of an 
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image convolution operator
9
 will have an outer two-dimensional (2D) loop iterating over the image and 

an inner 2D loop iterating over a pixel neighborhood within that image. Further, the neighborhood 

computations are likely to have a special case computation method for neighborhoods that are hanging 

off the edge of the image. To truly exploit a SIMD machine with a parallel sum of products operator and 

a parallel addition operator, a human programmer would likely apply an optimization that would split 

the outer 2D loop into two kinds of outer loops, one to handle special case computations (e.g., 

neighborhood partially off the edge of the image) and one to handle the default case (e.g., 

neighborhood completely within the image). Such a control design will provide better pipelining of data 

onto the bus (i.e., no bus stalls induced by the conditional branches that check for the off-edge 

condition) and therefore, more optimal exploitation of the parallel operators. This “optimization goal” 

can be accomplished by a metaprogram whose job is to discover the pieces (i.e., the outer 2D loop 

associated with the convolution and the conditional test for the special case computation) and 

transform them into the separate control structures. In AOG, this metaprogram is a large grain 

transformation named _SplitLoopOnCases. 

 

With conventional systems such optimizations are difficult because they cannot occur until the 

generator gets to the code level and integrates the code pieces that provide the programming details 

required by the loop splitting optimization. Further, the optimization (e.g., _SplitLoopOnCases) is 

ideally expressed in terms of abstract domain structures (e.g., the abstract form of a typical convolution 

and its special cases) but these structures correspond to low level programming language structures of 

the program that have lost any connection to that domain knowledge. That is, the generator no longer 

knows that a specific two-dimensional (2D) code level loop is a convolution and a specific if-then test in 

the body of that loop is a special case test associated with that convolution definition. The 

_SplitLoopOnCases optimization only works if the generator has retained a connection between 

the domain abstractions in which the optimization is expressed and the programming structures into 

which the domain abstractions are translated. While conventional optimization algorithms can (in 

theory) re-discover such connections, it is computationally complex and when the interrelationships 

among many individual optimizations are considered, re-discovery may tend to produce a search space 

explosion. For example, tens or hundreds of preparatory transformations may have to be discovered 

and run in a specific order to enable _SplitLoopOnCases and allow it to be successful.  

 

Ironically, the creator of these reusable components (e.g., convolution definition) has the key domain 

knowledge in hand at the time he puts the components into the reusable library. Further, he also knows 

that on a SIMD machine the _SplitLoopOnCases will be a good transformation to try on these 
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components. But conventional transformation systems allow no easy way to express early and then later 

exploit such information about desired optimizations.  

 

To retain such domain knowledge so that it can be directly applied once the composed components 

have been refined to a conventional programming language level, AOG introduces a new kind of 

transformation and a new control regime (i.e., tag-directed or TD Transformations
10

). The TD control 

regime preserves such early domain knowledge by adding tags to the reusable components. These tags 

provide direct information as to which TD transformation to invoke (i.e., the tag contains an explicit call 

with parameters that connect the domain concepts to the code details), when to invoke it (i.e., TD-

transformations are triggered by generator events) and where to focus its activity (i.e., on the 

component to which it is attached). This helps to avoid using complex algorithms to (partially) infer lost 

domain knowledge and discover the sequence of needed preparatory transformations, which in turn 

helps to eliminate the search spaces that can arise from the interactions of many such individual 

optimizations. 

 

The remainder of the paper will examine these strategies with emphasis on those that are particular to 

AOG. 

 

3 Localization 

3.1  The Problem 

DSLs significantly improve program productivity because they deal with large-grain data structures and 

large-grain operators and thereby allow a programmer to say a lot (i.e., express a lengthy computation) 

with a few symbols. Large-grain data structures (e.g., images, matrices, arrays, structs, strings, sets, etc.) 

can be decomposed into finer and finer grain data structures until one reaches data structures that are 

atomic with respect to some conventional programming language (e.g.,  field, integer,  real,  character, 

etc.). Thus, operators on large-grain data structures imply some kind of extended control structure such 

as a loop, a sequence of statements, a recursive function call, and so forth. As one composes large-grain 

operators and operands together into longer expressions, each subexpression implies not only some 

computation (e.g., pixel addition) that will eventually be expressed in terms of atomic operators (e.g., 

modular integer addition), but it also implies some control structure to sequence through those 

computations. Those implied control structures are typically distributed (i.e., de-localized) across the 

whole expression. 
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For example, if one defines an addition operator for images in some graphics domain and if a and b are 

defined to be graphic images, the expression (a + b) will perform a pixel-by-pixel addition of the 

images. To keep the example simple and limit the number of definitions that must be introduced, 

suppose that the pixels are integers (i.e., a and b are grayscale images) and a and b are the same size. 

Then the expression (a + b) implies a 2D loop over a and b. Squaring each pixel in resulting image 

(represented as (a + b)
2
 ) implies a second outer 2D loop. Human programmers easily identify this 

case as one that can be dealt with in a single 2D pass over the image.  

 

That kind of transformation seems simple enough but the real world is much more complex and when 

all of the cases and combinations are dealt with, it may require tricks to avoid the search space 

becoming intractably large. More complex operators hint at some of this complexity. For example, 

consider a convolution operator
11

 ⊕⊕⊕⊕, which for each pixel a[i,j] in some image a,  performs a sum of 

products of all the pixels in a neighborhood of that pixel times weights associated with the pixel 

positions of that neighborhood. The weights are defined separately from ⊕⊕⊕⊕. Suppose the weights are 

defined by a domain object s that is called a neighborhood of a pixel, where the actual pixel position 

defining the center of the image neighborhood will be a parameter of s. Then (a ⊕⊕⊕⊕ s) would define a 

sum of products operation for each neighborhood around each pixel in a where the details of the 

neighborhood would come from s. Thus, s will contribute (among other data) the neighborhood size 

and the definition of the method for computing the weights. The ⊕⊕⊕⊕ operator definition will contribute 

the control loop and the specification of the centering pixel that is to be the parameter of s. The 

translation rules not only have to introduce and merge the control structures, they have to weave 

together (in a consistent manner) the implied connections among the loop control, the definition of ⊕⊕⊕⊕ 

and the definition of s.  

 

Thus, localization can be fairly complex because it is coordinating the multi-way integration of specific 

information from several large-grain components. The greater the factorization of the operators and 

operands (i.e., the separation of parts that must be integrated), the more numerous and complex are 

the rules required to perform the (re-) localization. As a consequence, localization has the potential to 

explode the solution search space. To thwart this explosion, AOG groups localization rules in special 

ways and makes use of domain-specific knowledge to limit the explosion of choices during the 

localization process. Both of these strategies reduce the search space.  

 

While this paper will focus on the Image Algebra domain [36], the de-localization problem is universal 

over all complex domains with large-grain operators and operands. Localization is required when the 
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domain’s language factors and compartmentalizes partial definitions of large-grain operators and data 

structures and then allows compositional expressions over those same operators and data structures. 

Other domains that exhibit DSL induced de-localization are: 1) the User Interface domain, 2) the 

network protocol domain, 3) various middleware domains (e.g., transaction monitors), and so forth. 

 

3.2 An Example Mini-Domain 

To provide a concrete context for discussing the issues of localization, this section will define a tiny 

portion of the Image Algebra (IA) as a mini-DSL for writing program specifications.  

 

Domain Entity Description Definition Comments 

Image An composite data 

structure in the form 

of  a matrix with 

pixels as elements 

a = {a [i , j ]: a[i , j ] is a pixel}        

where a is a matrix of shape 

[[imin : imax], [jmin : jmax]]. 
 

Subclasses include images 

with grayscale or color 

pixels. To simplify the 

discussion, assume all 

images have the same 

size. 

Neighborhood
12

 A matrix template 

overlaying a region of 

an image and 

centered on an image 

pixel such that the 

matrix associates a 

numerical weight 

with each overlay 

position 

A neighborhood s is defined 

by a set of methods. For 

example, its weights are 

defined by a method w.s that 

computes elements of the set 

w(sa[i,j]) = { w[p , q] : w[p , q]  

is a numerical weight 

associated with the [p , q] 

position of s centered on pixel 

[i,j] of some image a where s 

is a neighborhood of shape 

[[pmin : pmax] , [qmin : 

qmax]]  and a is an image of 

shape [[imin : imax] , [jmin : 

jmax]] } 

Neighborhoods are 

objects with methods. The 

methods define the 

weights, neighborhood 

size, special case 

behaviors, and methods 

that compute a 

neighborhood position in 

terms of image 

coordinates. Notice that 

all methods (e.g.,  w.s) 

may depend upon the 

image size and shape, 

neighborhood   size and 

shape as well as the 

position of the 

neighborhood in the 

image. 

Convolution The convolution  (a 

⊕⊕⊕⊕ s) applies the 

neighborhood s to 

each pixel in a to 

produce a new image 

(a ⊕⊕⊕⊕ s) = {∀∀∀∀i,j (b[i , j ]  : b[i , j ]     

= (∑∑∑∑p, q (w[p , q] * a [i+p , 

j+q])) } 

where w[p , q] ∈∈∈∈ w(sa[i,j]), p 

and q range over the 

Variants of the 

convolution operator are 

produced by replacing the 

∑∑∑∑ p, q operation with ΠΠΠΠ p, q, 

Min p, q, Max p, q, and 
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neighborhood  s; i and j range 

over the images a and b) 

others; and the + 

operation with *, max, 

min and others. 

Matrix 

Operators 

(a+b) , (a-b) , (k*a) , 

a
n
, √√√√a where a & b 

are images, k & n are 

numbers 

These operations on matrices 

have the conventional 

definitions, e.g., (a+b) = {∀∀∀∀i,j 

(ai,j + bi,j )} 

 

 

Define the weights for concrete neighborhoods s and sp to be 0 if the neighborhood is hanging off the 

edge of the image, or to be 
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if it is not. Given these definitions, one can write an expression for a Sobel edge detection method [36] 

that has the following form: 

b = [(a ⊕⊕⊕⊕ s)
2
 + (a ⊕⊕⊕⊕ sp)

2
]
1/2
  

This expression de-localizes loop controls and spreads them over the expression in the sense that each 

individual operator introduces a loop over some image(s), e.g., over the image a or the intermediate 

image  (a ⊕⊕⊕⊕ s). Consider what control structures are implicit in this expression, how they are related 

and how these separate implicit control structures can be woven into a minimal combined control 

structure.   

 

3.3 A Localization Example 

Implicit in the definitions of the operator and operands are the following control information and 

relationships
13

:  

 

1) The instances of a imply 2D loop controls that iterate through the pixels of a – e.g.,  

(∀∀∀∀i,j: ai,j) and  (∀∀∀∀v,z: av,z) – where the generator creates the index variables 

i,j and v,z, and  a supplies information about the ranges of the index variables;  
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 To keep the example simple, it will assume that a and b have the same dimensions. 



  

  

2) The convolution expressions (a ⊕ ⊕ ⊕ ⊕     s) and (a  ⊕   ⊕   ⊕   ⊕  sp) imply two additional 2D loop controls 

that must be identical to the   (∀∀∀∀i,j: ai,j) and  (∀∀∀∀v,z: av,z)  loop controls;   

3) The convolution expressions also imply 2D loops over the neighborhoods (e.g.,                                

(∑∑∑∑p,q: (w.s (a[i,j],m,n,p,q) * ai+p,j+q))) that are nested within the i,j and 

v,z  loops, where s and sp supply both the ranges of p and q, and the neighborhood weight 

method  (e.g.,  w.s
 
(a[i,j],m,n,p,q), which computes the weight at the  p,q offset of 

neighborhood s, when s is positioned at the pixel i,j in the m by n image a); 

4) The instance of b implies a 2D loop with generated index variables  d,e, i.e.,  (∀∀∀∀d,e: bd,e)  

but the generator will have to infer the relationship between this loop and the other loops;  and 

5) The generator will have to infer that the 2D loop controls implied by the image instances may be 

merged with 2D loop controls implied by the convolution, square, plus, square root, and 

assignment operators based on the semantics of those operators and their operands. 

Operationally, this means that some of the generated index variables will be discarded and 

others used in their place. 

 

Now, consider an idealized example of AST rewrites that will perform localization. The example will 

ignore many implementation complexities. Also, the AST rewrites will be re-ordered slightly to simplify 

the presentation. Even though the AST is a tree, the example will use a text based publication form 

where the tree structure is implied by the parenthetical nesting of expressions.  For reference, rules will 

be given names. The beginning example AST is: 

b = [(a ⊕⊕⊕⊕ s)
2
 + (a ⊕⊕⊕⊕ sp)

2
]
1/2
  

A rule named RefineComposite will rewrite the AST to refine image instances (e.g., b) into pixel 

instances (e.g., bd,e ) by introducing the control structures implied by the image instances. Three 

applications of the rule transforms the AST into the form: 

(∀∀∀∀d,e: bd,e)   = [((∀∀∀∀i,j: ai,j)  ⊕⊕⊕⊕ s)
2
 + ((∀∀∀∀v,z: av,z)  ⊕⊕⊕⊕ sp)

2
]
1/2
  

Next, the ConvolutionOnLeaves rule will introduce the definitions of the outer loop of ⊕⊕⊕⊕ and infer 

the equivalence of the outer loops of ⊕⊕⊕⊕ and the loops (i.e., ∀∀∀∀i,j  and ∀∀∀∀v,z) already introduced. 

Because ⊕⊕⊕⊕    is overloaded, the new expression is using the definition of ⊕⊕⊕⊕     that operates on pixels 

whereas the previous expression was using the definition that operates on images. 

(∀∀∀∀d,e: bd,e)   = [(∀∀∀∀i,j: ai,j  ⊕⊕⊕⊕ s)
2
 + (∀∀∀∀v,z: av,z  ⊕⊕⊕⊕ sp)

2
]
1/2
  

Next, the FunctionalOpsOnComposites rule processes the square operator applied to the 

intermediate images (e.g., the image represented as  (∀∀∀∀i,j: ai,j  ⊕⊕⊕⊕  s) ). Since square is a pure 

arithmetic function, no new loop needs to be introduced. Square can be immediately applied to each of 



  

  

the pixel values as they are computed by the i,j and v,z  loops. Operationally, this just propagates 

the loops above the respective square operators. 

(∀∀∀∀d,e: bd,e)   = [(∀∀∀∀i,j: (ai,j  ⊕⊕⊕⊕ s)
2
) + (∀∀∀∀v,z: (av,z  ⊕⊕⊕⊕ sp)

2 

)]
1/2
  

The next rewrite (the FunctionalOpsOnParallelComposites rule) determines that the + 

operator is adding two intermediate images whose loops can be merged. It chooses to retain the i,j 

index variables and discard the v,z  variables. In effect, this propagates the i,j loop above the + 

operator and replaces the v,z  indexes with i,j. 

(∀∀∀∀d,e: bd,e)   = [∀∀∀∀i,j: ((ai,j  ⊕⊕⊕⊕ s)
2
 + (ai,j  ⊕⊕⊕⊕ sp)

2 
)
1/2
 ] 

Like the square operator, the semantics of the square root operator allows the i,j loop to be 

propagated above it. 

 (∀∀∀∀d,e: bd,e)   = ∀∀∀∀i,j: [ ((ai,j  ⊕⊕⊕⊕ s)
2
 + (ai,j  ⊕⊕⊕⊕ sp)

2 
)
1/2
 ] 

Like the earlier case that combined loops over the + operator, the next rewrite (the 

FunctionalOpsOnParallelComposites rule) will merge the loops over the assignment 

operator, retaining the i,j index variables and discarding the d,e  variables. The final form of loop 

localization is: 

∀∀∀∀i,j: [ bi,j   = ((ai,j  ⊕⊕⊕⊕ s)
2
 + (ai,j  ⊕⊕⊕⊕ sp)

2 
)
1/2
 ] 

A following section will exhibit the form of the RefineComposite rule used in this example, but first, 

the form and storage organization of the PD transformation rules must be explained. 

 

3.3.1 Defusing Search Space Explosions 

As discussed earlier, AOG avoids NP complete approaches to program generation by solving narrower, 

more specialized problems with methods that are polynomial in some aspect of the program (e.g., 

number of nodes in an expression tree).  Localization is one such specialized solution. While this 

narrowing of the problem is by far the most important technique for defusing search space explosions, 

AOG uses two additional tricks to reduce search space explosion: 1) It groups the localization rules in 

ways that make irrelevant rules invisible, and 2) It uses domain knowledge (e.g., knowledge about the 

general design of the code to be generated) to further prune the search space. 

 

The discussion will focus on item 1 and defer discussion of item 2. Grouping transformations so that at 

each decision point only a small number of relevant transformations need to be tried is a good way to 

reduce the search space. AOG implements this idea by allowing rules to be stored under any object (e.g., 



  

  

a “type” object) and allows additional discrimination by further grouping the rules under an arbitrary 

translation phase name. The phase name captures the strategic objective or job that those rules as a 

group are intended to accomplish (e.g., the Localize phase performs control localization). In addition, 

the object under which the rules are stored often provides some key domain knowledge that further 

prunes the search space. For example, in order for loop localization to move loops around, it needs to 

know the data flow design for the various operators. The general design of the operator’s data flow is 

knowable by knowing the resulting type of the expression plus the details of the expression. Thus, the 

localization rules are stored on type objects. The individual rules determine the details of the expression 

(e.g., operator and operand structure) via pattern matching. As a consequence, the localization process 

for a specific expression of type X is a matter of trying all rules in the Localize group of the type X and in 

the Localize group of all super types of X. Notice that this means that AOG transformations support a 

form of inheritance if they are attached to types. An AOG rule will be attached to the most general type 

to which it applies and it will  apply to all subtypes as well. 

 

Operationally, AOG rules provide this organization by the rule format: 

 

(⇒⇒⇒⇒ XformName PhaseName ObjName Pattern RewrittenExpression Pre Post) 

 

The transform’s name is XformName (e.g., RefineComposite). The rule is stored as part of the 

ObjName object structure, which in the case of localization will be a type object, e.g., the image type. 

The rule is enabled only during the PhaseName phase, which in this context is Localize.  Pattern 

is used to match an AST subtree and upon success, the subtree is replaced by 

RewrittenExpression instantiated with the bindings returned by the pattern match. Pre is the 

name of a routine that checks enabling conditions and performs bookkeeping chores (e.g., creating 

translator variables and computing equivalence classes for localization). Post performs various 

computational chores after the rewrite.  Pre and Post are optional. 

 

For example, a trivial but concrete example of a PD rule would be 

 

(⇒⇒⇒⇒ FoldZeroXform SomePhaseName dsnumber `(+ ?x 0) `?x)   

 

This transform is named FoldZeroXform, is stored on the type dsnumber, is enabled only in phase 

SomePhaseName, and rewrites an expression like (+ 27 0) to 27. The pattern variable ?x will 

match anything in the first position of expressions of the form (+ __ 0). Now, let’s examine an 

example localization rule. 



  

  

 

3.3.2 RefineComposite Rule 

Among the rules used in the earlier example is RefineComposite, which refines an instance of a 

black and white image (e.g., a) into an instance of a black and white pixel (e.g., a[i,j]) and generates 

the implied control structure (e.g.,  (∀∀∀∀i,j: ...) ) needed to iteratively compute the pixel values. 

The idealized forms shown in the example are designed for publication but gloss over some of the 

operational details needed for localization. In order to understand the example rule, these details must 

be defined. For example, each node in the AST tree has a LISP-like property list (called a tags list) that is 

used to keep translation data specific to that AST node. The tags lists are simply appended to an AST 

node list. For example, the expression (+ a b) might have a tags list that contains an attribute value 

pair (itype image) indicating the type of the expression is image. That AST node would be 

represented as  (+ a b (tags (itype image)). All AST leaves consisting of atomic items are 

represented by the form (leaf AtomicItem (tags …)) to provide a place to hang the tags list 

for such nodes. Thus, the left hand side (lhs) of RefineComposite will have to match an AST node of 

the form (leaf a (tags (itype image))). 

 

By the same token, the implementation form of the transformed AST node a[i,j] will be represented 

for the convenience of the localization machinery. Rather than encoding a[i,j] as an inline syntactic 

expression that will have to be recognized and deconstructed with every use, it is represented by a 

translator-generated temporary symbol (e.g.,  bwp27) of type bwpixel. Similarly, the other translator-

generated variables shown as i and j in the idealized example, will be translator-generated variables 

with forms more like idx28 and idx29. Further, rather than encoding the loop information (e.g.,  

(∀∀∀∀i,j: ...) ) in terms of AST syntax that will have to be recognized and deconstructed by every 

subsequent rule, it is stored in a canonical form on the tags list, thereby allowing it to be ignored by all 

rules for which it is not relevant. This canonical form will be defined later. 

 

Additionally, the RefineComposite rule will:  

 

• Create a record of the correspondence relationship between the large-grain composite a and 

the component bwp27 computed from it (e.g., the expression (_mappings (bwp27) 

(a))), which will be needed to determine what can be shared between various loops and how 

loops nest, and  

• Generate a rule containing the details of the refinement relationship (e.g., a rule like bwp27 

=> a[idx28, idx29]), which will be needed to (eventually) re-express translator symbols 

in terms of the original data structures and the generated control variables.  



  

  

 

How would one formulate the RefineComposite rule in AOG? Given a routine to generate symbols 

(gensym), a first approximation of this rule might be: 

 

(=> RefineComposite Localize Image `?op (gensym ‘bwp)) 

 

But this form of the rule does not do quite enough. An image instance should be represented in the AST 

in the leaf form – e.g., (leaf a …). Thus, the rule will have to deal with a structure like (leaf a 

(tags  Prop1 Prop2 … )).  For robustness, the rule will allow the naked atomic image a as well. 

To accommodate this case, the rule pattern will have to use AOG’s “or” pattern operator, $(por pat1 

pat2 …), which allows alternative sub-patterns (e.g., pat1 pat2…)  to be matched. 

 

(=> RefineComposite Localize Image    

    `$(por (leaf ?op) ?op) (gensym ‘bwp)) 

 

Now, (leaf a …) will get translated to some black and white pixel symbol such as bwp27 with ?op 

bound
14

 to a (i.e., ((?op a))). However, the rule does not yet record the relationship among the 

image a, the bwpixel bwp27, and some yet-to-be-generated index variables (e.g., idx28 and 

idx29) that will be needed to loop over a to compute the various values of bwp27. So, the next 

iteration of the rule adds the name of a pre-routine (say RCChores) that will do the translator chores 

of gensym-ing the bwpixel object (bwp27), binding it to a new pattern variable (say ?bwp), and 

while it is at it, gensym-ing a couple of index objects and binding them to ?idx1 and ?idx2. The next 

iteration of the rule looks like: 

 

(=> RefineComposite Localize Image        

    `$(por (leaf ?op) ?op) `(leaf ?bwp) `RCChores) 

 

Executing this rule on the AST structure (leaf a …) will create the binding list  ((?op a) (?bwp 

bwp27) (?idx1 idx28) (?idx2 idx29)) and rewrite (leaf a …)  to (leaf bwp27). 

However, it does not yet record the relationship among a, bwp27, idx28, and idx29. Other 

references to images in the example expression will create analogous sets of image, bwpixel, and 

index objects, some of which will end up being redundant. In particular, new loop index variables will 

get generated at each image reference in the AST expression. Most of these will be redundant and other 

rules will be added that merge away these redundancies by discarding redundant bwpixels and 
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 A binding list is defined as a list of  (variable  value)  pairs and is written as ((vbl1 val1)  (vbl2 val2) ...). Instantiation 

of an expression with a binding list rewrites the expression substituting each valn for the corresponding vbln in the expression. 



  

  

indexes. So, the next version of the rule will create a shorthand form expressing the relationship among 

these items and add it to the tags list. The shorthand will have the form
15

 

 

 (_forall (idx28 idx29)  

          (_suchthat (_member idx28 (_range minrow maxrow))  

                     (_member idx29 (_range mincol maxcol))  

                     (_mappings (bwp27) (a)))) 

 

The idx variable names will become loop control variables that will be used to iterate over the image a 

generating pixels like bwp27, which will eventually be refined into array references such as  (aref a 

idx28 idx29). The _suchthat sub-expression captures all of the relationships that will be needed 

to perform loop localization steps and final code generation for the loop. The _member clauses define 

the ranges of the index variables. The lists in the _mappings clause establish the correspondences 

between elements (e.g., bwp27, bwp41, etc.) and the composites from which they are derived (e.g., a, 

b, etc.), thereby enabling the finding and elimination of redundant elements and loop indexes.  

The final form of the RefineComposite rule (annotated with explanatory comments) is: 

 

(=> RefineComposite Localize Image  

    `$(por (leaf ?op)  Pattern to match an image leaf structure 

           ?op)        or just an image atom. Bind it to ?op 

    `(leaf ?bwp        Rewrite image as the bwpixel bound to ?bwp. 

        (tags          Add a property list to bwpixel structure. 

   (_forall (?idx1 ?idx2)    Add a loop shorthand of indexes,  

            ranges, and  

             (_suchthat (_member ?idx1 (_range minrow maxrow))  

           (_member ?idx2 (_range mincol maxcol)) 

                (_mappings (?bwp) (?op))))    DS relations. 

           (itype bwpixel)))   Add new type expression. 

    `RCChores)  Name the pre-routine that creates bwpixel & indexes. 

 

Follow-on phases (CodeGen and SpecRefine respectively) will cast the resulting shorthand(s) into 

more conventional loop forms and refine intermediate symbols like bwp27 into a computation 

expressed in terms of the source data, e.g., a[idx32,idx33]. But this refinement presents a 

constraint coordination problem to be solved. How will the later phases know to refine bwp27 into 

a[idx32,idx33] since when it was first generated, the original relationship suggested it would be 

refined into a[idx27,idx28]? In other words, along the way, idx27 and idx28 became 

redundant and were replaced with idx32 and idx33. But just replacing bwp27 with bwp31 in the 
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 The AST is constructed using AST structures such as:  _forall and _sum  for expressing iterations; _suchthat as a holder of  restrictive 

clauses defining the iterations; _member and _range as boolean operators used for expressing those restrictions;  and _mappings for 

expressing the relationships between larger grain data structures (e.g.,  an image) and their smaller grain components (e.g., a black and white 

pixel).  



  

  

AST at the point the redundancy is discovered does not work because the redundant indexes (e.g., 

bwp27) may occur in multiple places in the expression due to previously executed rules. Worse yet, 

there may be instances of bwp27 that are yet to appear in the expression tree due to deferred rules 

that are pending. Other complexities arise when only the indexes are shared (e.g., between different 

images such as a and b). Finally, since the replacement of bwp27 is, in theory, recursive to an indefinite 

depth, there may be several related abstractions simultaneously undergoing localization combination 

and coordination. For example, a color pixel abstraction, say cp27, may represent a call to the red 

method of the pixel class – say  (red pixel26) –  and the pixel26 abstraction may represent an 

access to the image – say a[idx64, idx65]. Each of these abstractions can potentially change 

through combination during the localization process. So, how is this problem handled in AOG? 

 

3.3.3 Speculative Refinements Propagate Constraints 

This coordination problem is solved in AOG by the Speculative Refinement (SR) process, which 

dynamically builds refinement rules and stores them on the relevant translator generated objects, e.g., 

bwp27. In effect, the resultant set of rules propagates and coordinates constraints and translation 

decisions over a DSL expression. These rules are “speculative” in the sense that a rule may be altered or 

eliminated by subsequent localization decisions. For example, the combination process seen in the 

previous section incrementally modifies these rules to properly reflect the incremental removal of 

redundancies. Once all rules are coordinated, they will be applied in a follow-on phase called the 

SpecRefine phase. 

 

As an example of how SR rules are created, consider the RefineComposite rule shown earlier. Its 

pre-routine, RCChores, will create the several SR rules while processing various sub-expressions. 

Among them are: 

 

(=> SpecRule89 SpecRefine bwp27 `bwp27 `(aref a idx27 idx28)) 

(=> SpecRule90 SpecRefine bwp31 `bwp31 `(aref a idx32 idx33)) 

 

Later, the pre-routine of the FunctionalOpsOnParallelComposites rule makes the decision to 

replace bwp27 with bwp31. The SR rule SpecRule89 gets changed to: 

 

(=> SpecRule89 SpecRefine bwp27 `bwp27 `bwp31) 

 

Thus, at the end of the loop localization phase all speculative refinement rules are coordinated to reflect 

the current state of localization combinations. The follow-on speculative refinement phase recursively 

applies any SpecRefine rules (e.g., SpecRule89) that are attached to abstractions (e.g., bwp27) in 



  

  

the AST tree. The result is a consistent and coordinated expression of references to common indexes, 

pixels, structure field names (e.g., red), and so forth. 

 

3.3.4 Domain-specific Optimizations 

Domain-specific optimizations are opportunistic rules that run between refinement stages and attempt 

to improve the resultant code through use of domain knowledge. A simple example of one such DS 

optimization that will be triggered for the example expression is the reduction in strength (RIS) 

optimization rule
16

 that replaces the square operation
17

 with multiplication. Since the item to be 

squared (e.g., the expression bound to ?expr) is an expression as opposed to a variable or constant, 

the rule must avoid performing computation of the expression twice. The rule’s pre-routine does this by 

inventing a temporary variable (e.g., t1) to hold the value of the expression to be squared and binding it 

to a pattern variable (?tmpvbl).  The DS optimization transformation has the form: 

(=> RuleName PhaseName TypeName (** ?expr 2) (* ?tmpvbl ?tmpvbl)  

    Pre Post) 

The pre-routine also has to generate an assignment statement of the form  

 (= ?tmpvbl ?expr)  

to be placed into a yet-to-be-created context that dominates (i.e., precedes on all data flow paths) the 

statement containing the ?expr expression. The placement of such assignment statements is handled 

by rules (called deferred rules) that the pre-routine dynamically creates. The lhs pattern of such a rule 

describes the expected context and the rhs rewrites the context to add the assignment statement. 

Deferred rules will be triggered when their target context is eventually created. The expected context 

for this assignment statement will be created during the CodeGen phase when the localization tags 

that evolved during the localization phase are finally converted into conventional loops. The next section 

describes the eventual generation of this context and the results produced by the pending deferred 

rules. 
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 Most compilers perform optimizations like this. However, if one waits until compile time to perform the RIS optimization, many opportunities 

for architectural shaping optimizations will be lost because this optimization may be a prepatory optimization that will establish some of the 

enabling conditions for a later  TD-transform. AOG uses mostly conventional optimizations. [1] AOG’s contribution is in the way in which it 

orchestrates a variety of complementary optimizations (some conventional, some not) to achieve a global architecture that optimizes the 

computation as a whole. For this example, because of the characteristics of the neighborhoods s and sp and the nature of a CPU without 

parallel instructions, AOG’s goal is to setup the computation so that the two inner (neighborhood) loops can be unrolled and simplified into 

arithmetic expressions. By contrast, for a CPU with parallel instructions, AOG attempts to create an architecture that turns the inner loops into 

an expression that processes each neighborhood row in parallel. Section 4 treats this parallel architecture case. 

17
 Represented as a superscript 2 in the idealized representation and as “**” in the AST. 



  

  

3.3.5 Localization Results 

Upon completion of the speculative refinement phase, a follow-on phase (CodeGen) converts 

localization tags into AST loop forms.  At this point in the generation process, the Sobel edge detection 

expression will be converted into the AST expression: 

 

(_forall (idx32 idx33) 

   (_suchthat  (_member idx32 (_range 0 (- m 1)))  

      (_member idx33 (_range 0 (- n 1)))) 

   (=   (aref b idx32 idx33)  

 (sqrt (+ (* t1 t1) (* t2 t2))))) 

 

This form is a context that will trigger the two still pending but deferred transforms that were created by 

the RIS optimization. They will insert the temporary variable assignment statements at the beginning of 

the loop body, resulting in the new form: 

 

(_forall (idx32 idx33) 

   (_suchthat  (_member idx32 (_range 0 (- m 1)))  

       (_member idx33 (_range 0 (- n 1)))) 

   (= t1 (⊕⊕⊕⊕ (aref a idx32 idx33) s))  

   (= t2 (⊕⊕⊕⊕ (aref a idx32 idx33) sp)) 

   (= (aref b idx32 idx33)  

      (sqrt (+ (* t1 t1) (* t2 t2))))) 

 

Subsequent phases will further refine this form by in-lining definitions
18

 for the convolution operator (⊕⊕⊕⊕) 

inner loop, which is expressed in terms of the variables idx32 and idx33 as well as calls to methods 

of s and sp (e.g., the w method of s and sp). Recursive in-lining will further replace these method calls 

by their definitions. The inlining phase is followed by a series of phases that apply TD transformations to 

architecturally shape the code so that its operational behavior is better tailored to its computational 

environment. (See the next section.) The final code produced for a CPU without parallel instructions is: 

for (idx32=0; idx32 < m; idx32++)                 /* No parallelism*/  

    {im1=idx32-1; ip1= idx32+1;  

     for (idx33=0; idx33 < n; idx33++) 

         { if (idx32==0 || idx33==0 ||  

        idx32==m-1 || idx33==n-1)   /*Neighborhood Off edge?*/    

      then b[idx32, idx33] = 0;               /* Off edge */ 

       else {jm1= idx33-1; jp1 = idx33+1;  /* Not off edge */ 

           t1 = a[im1,jm1]*(-1)+a[im1,idx33]*(-2) +  

                  a[im1,jp1]*(-1)+a[ip1,jm1]*1 +  

                  a[ip1,idx33]*2+a[ip1,jp1]*1; 

           t2 = a[im1,jm1]*(-1)+a[idx32,jm1]*(-2) +  

                  a[ip1,jm1]*(-1)+a[im1,jp1]*1 +  
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 Operator and method definitions are expressed as pure functions to simplify their manipulation. 



  

  

                  a[idx32,jp1]*2+a[ip1,jp1]*1;  

           b[idx32,idx33] = sqrt(t1*t1 + t2*t2 )}}} 

 

This result requires about 340 total transformation applications. 

4 Architectural Shaping 

4.1 Exogenous Constraints on Code Form 

Up to this point, the paper has addressed the search space explosions that arise from the interactions of 

domain properties and refinement constraints (e.g., the refinement choice to implement a container as 

a linked list constrains the choices of search algorithms). These are endogenous constraints in that they 

arise from the essence of the computation itself and not from the nature or constraints of the external 

environment. Endogenous constraints act like a set of simultaneous logical equations, the solution of 

which is the code that achieves the DSL specification while simultaneously obeying all logical constraints. 

Computational correctness dictates that these constraints must be met. However, there are other kinds 

of less rigid requirements, influences and opportunities that suggest but do not require changes to the 

code’s operational properties (e.g., the opportunity for parallel computations). Could the code be 

reorganized to better interact with another piece of software such as network software, middleware, 

user interface, data base management system, etc? Could the code be reorganized to exploit hardware 

parallelism? These are all “constraints” in the broadest sense and since they arise mostly because of the 

computational environment, they are called exogenous constraints. Like endogenous constraints, the 

exogenous constraints introduce search space explosions because there are so many alternative ways in 

which a computation can be reorganized and so many constraints among the individual reorganization 

steps. However, before examining ways to control and limit this explosion, consider the concrete result 

of AOG reorganizing the Sobel example to exploit hardware parallelism. 

 

In contrast to the target code produced by AOG for a CPU without parallel instructions (above), consider 

how AOG alters this code to exploit parallel instructions such as the MMX instructions of the Pentium
TM

 

processor. For this case, AOG will produce code
19

 that looks quite different: 

   

  {int s[(-1:1), (-1:1)]={{-1, 0, 1}, {-2, 0 , 2},{-1, 0, 1}};/* MMX */ 

int sp [(-1:1), (-1:1)]={{-1, -2, -1}, {0, 0, 0}, {1, 2, 1}}; 

for (j=0; j<n; j++) b[0,j] = 0;    /*Zero image edge */ 

for (i=0; i<m; i++) b[i,0] = 0;    /*Zero image edge */ 

for (j=0; j<n; j++) b[(m-1),j] = 0;/*Zero image edge */ 

for (i=0; i<m; i++) b[i,(n-1)] = 0;/*Zero image edge */ 

{ for (i=1; i < (m-1); i++)        /*Process inner image */ 

  { for (j=1; j < (n-1); j++)  

      {t1 = unpackadd(padd2(padd2(pmadd3(&(a[i-1,j-1]),&(s[-1,-1])),  
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 In the name of compactness, the examples from here on will revert to the short idealized names for generated variables, e.g., i and j rather 

than idx32 and idx33. 



  

  

                        pmadd3(&(a[i, j-1]),&(s[0,-1]))), 

                   pmadd3(&(a[i+1,j-1]),&(s[ 1, -1]))); 

       t2 = unpackadd(padd2 (pmadd3 (&(a[i-1, j-1]),&(sp [-1,-1])),  

                             pmadd3 (&(a[i+1, j-1]),&(sp [0,-1]))))); 

       b[i,j] = sqrt(t1*t1 + t2*t2);}}} 

 

where the routines unpackadd, padd2, and pmadd3 correspond to MMX instructions and are 

defined as pmadd3 ((a0, a1, a2) , (c0, c1, c2)) = (a0*c0+a1*c1, a2*c2+0*0), 

padd2 ((x0, x1) , (x2, x3)) = (x0+x2, x1+x3), and unpackadd((x0, x1)) = 

(x0+x1).   These routines lend themselves to direct translation into MMX instruction sequences. In 

this example, the neighborhood objects s and sp have become pure data arrays to exploit the MMX 

instructions. Notice that the special case that tests to see if the template is hanging over the edge of the 

image (i.e., “if (i==0 || j==0 || i==m-1 || j==n-1)… ” ) has completely disappeared. Transformations 

have split the main loop on that test, turning the single loop of the previous version into five loops by 

incorporating the special case test logic into the loop control logic. Four of the loops plug zeros into the 

four edges of the image (i.e., the new form of the special case processing) and one loop processes the 

inside of the image (i.e., the non-special case processing). The fundamental difference in the derivation 

of the two versions is in the tag-directed optimization phases. Up to that stage, the transformations that 

fire are the same, resulting in two interim program forms that are the same except for the tags. This 

version requires about 310 transformation applications. 

  

4.2 Using Domain Knowledge in Architectural Shaping 

So, how can AOG accomplish such a significant difference? The short answer is that AOG retains domain 

knowledge in the form of tags attached to the component parts and applies that domain knowledge by 

invoking the transformations named in those tags. To understand this strategy, consider the desired 

architecture and the domain knowledge that can be brought to bear to arrive at that architecture.  

 

In order to exploit MMX instructions, the generated code needs to have some important architectural 

properties. First, the weights need to be formed into a vector to exploit the vector processing of the 

MMX instructions. Second, the neighborhood loop body needs to be branch free so that the vector 

processing instructions will not be interrupted by branch instructions.  

 

Now, consider the domain knowledge that is available for accomplishing these architectural goals. The 

person who defines the neighborhood s knows that it will be used in some DSL expression containing a 

convolution operation, for example 

 



  

  

(t1 = (a ⊕⊕⊕⊕ s)).  

 

This expression will translate into some form that is conceptually equivalent to  

 

     {∀∀∀∀i,j: (t1[i,j]: t1[i,j] =  

   (∑∑∑∑p,q: (a[i+p,j+q] * w.s(a[i,j],m,n,p,q))))} 

 

where the loop over the m by n  image a (i.e.,  ∀∀∀∀i,j) is introduced by the control localization rules, the 

loop over the neighborhood (i.e.,  ∑∑∑∑p,q) is introduced by the definition of the ⊕⊕⊕⊕ operator, and the 

temporary image variable t1 is  introduced by the RIS optimization as a temporary holder of the 

computation result. When the w.s (weight) method is authored, neither the ∀∀∀∀i,j  loop nor the ∑∑∑∑p,q  

loop have been generated but the author of the method knows that loops of this form will exist even 

though their detail structure will not be known until some specific DSL expression (e.g., (a ⊕⊕⊕⊕ s)) has 

been translated. Such knowledge is highly domain-specific and, in the context of the w.s  method, 

suggests how to reshape the w.s definition and its future context to exploit an MMX architecture.  

 

The body of the w.s definition has the conceptual form 

 

if the neighborhood is hanging off the image’s edge  

then 0  

else compute w as a function of p and q 

 

The off-edge test depends on the indexes i and j but not on p or q and therefore, the test should be 

moved outside of the p and q loop (by distributing the loop over the if statement) to establish some 

of the enabling conditions for a later transform that splits up the i, j loop to avoid bus stalls (i.e., 

_SplitLoopOnCases). The author of the method will add a tag to the if statement that will 

schedule a transformation named _PromoteConditionAboveLoop, which distributes the p and q 

loop over the if to help enable _SplitLoopOnCases.  

 



  

  

Promoting the condition above the loop is motivated by the desire to eliminate the off-edge test 

altogether.  The author knows that if the off-edge condition predicates can be incorporated into the 

loop control logic for the i, j loop, the special case logic will become a separate set of loops and the 

branching logic will disappear from the body of the i, j loop. This will eliminate branch induced bus 

stalls as the data flows onto the CPU bus. All of this will increase the parallelism in the computation. 

Thus, the author of the method also adds a tag that will trigger the _SplitLoopOnCases 

transformation. It will attempt to incorporate the off-edge condition into the loop control logic thereby 

forming separate loops to perform the special case computations.  

 

Finally, the method author recognizes that the w values need to be formed into an array so that a whole 

row of neighborhood weights can be used as input to a parallel computation. Thus, the else branch is 

tagged to invoke the _MapToArray transformation, which will form such an array of values and 

change the code using w accordingly. Finally, the author of the inner convolution loop (the p, q loop) 

needs to tag that loop so that it is reshaped to exploit the MMX instructions. This is accomplished by a 

tag on the definition of the convolution’s inner loop. The tag will invoke the  _MMXLoop  transformation 

to do the reshaping. 

 

Thus, this strategy produces a set of definitions tagged with cooperating transformations that will 

reshape the code into an MMX form, and do so without deep analysis or search. These tags capture the 

domain knowledge that is available at the time the components are authored. But what about a non-

MMX contexts? How does the AOG system deal with differing contexts (e.g., MMX vs non-MMX)? 

Simply put, it allows choice among separately tagged component versions for different contexts by using 

an analog of C’s ifdef. Once the contextual constraints are chosen, the ifdef analog chooses the 

definitions that are specific to those contextual constraints. The tags on those definitions will then shape 

the generated code to fit the selected context.  

 

However, one issue remains. How are the transformations invoked so that the individual steps in the 

reshaping process happen in the proper order? The answer is that TD tags are triggered based on 

events. The TD tag format is (_on event TDTransformCall). Each TD tag contains an event 

expression (i.e., event) that tells it when to trigger the call to the transformation (i.e., 

TDTransformCall). The events can be preplanned, named stages that may sequence 

transformations according to an abstract script. Alternatively, the events may be unscriptable 

opportunistic events caused by other transformation or generator actions (e.g., substitution of an 

expression). The next section illustrates both kinds. 

 



  

  

4.3 Example Tag-Directed Transformations  Exploiting Parallelism 

Now, the steps in refining (= t1 (a[i,j] ⊕⊕⊕⊕ s))20 and its role in the global optimizations will be 

sketched in a bit more detail. A refinement phase named Formals will inline definitions for ⊕⊕⊕⊕ and the 

methods of s that ⊕⊕⊕⊕ uses. The definition for the MMX version of the  ⊕⊕⊕⊕ operator with a type signature 

of  “(⊕⊕⊕⊕  image [iterator, iterator], neighborhood)”  is defined as: 

 

(DefComponent BConvXImageArrayXNeighborhood 

     (⊕⊕⊕⊕ ?a[?i ?j] ?s “bind ?m & ?n to dimension fields of ?a” 

          “generate ?p and ?q names from ?s”)  

     (_sum (?p ?q)  

        (_suchthat (_member ?p (prange21 ?s ?a[?i ?j]))  

          (_member ?q (qrange  ?s ?a[?i ?j]))) 

        (*  ?a[(row ?s ?a[?i ?j] ?p ?q)  

                 (col ?s ?a[?i ?j] ?p ?q)]  

           (w ?s ?a[?i ?j] ?m ?n ?p ?q)) 

        (tags (_on (RestructLoop 1) (_MMXLoop ?p ?q))))22 

 

This definition is simplified to eliminate many of the variations and details (e.g., type checking) of the 

real component, thereby making it more intuitive. The parameter list of a component is a pattern and in 

reality, more complex than is shown here. In particular, the parameter pattern portion that binds ?m 

,?n, ?p and ?q  is expressed in the example in English pseudo-code that eliminates some of the 

complexity of the actual pattern expression.  To make the connections even more obvious, the example 

will use pattern variables that directly correspond to the target program variables that they will be 

bound to, e.g., the pattern variable ?a will be bound to the target program variable a. Further, the 

definition uses a bit of syntactic sugar to make some of the pattern elements more intuitive (e.g., we use 

a[i j] for array references instead of the actual AST representation of (aref a i j)  ). However, 

in a concession to the true AST format, the example expresses the operator and method expressions in a 

LISP-like, space-delimited prefix form, i.e., (⊕⊕⊕⊕ a[i j] s) instead of (a[i,j] ⊕⊕⊕⊕ s).  

 

                                                           
20

 Since (= t2 (a[i,j] ⊕⊕⊕⊕ sp)) behaves analogously, its final form is analogous to (= t2 (a[i,j] ⊕⊕⊕⊕ s)) but differs in  the weight 

constants, the generated variable names and some structural differences due to differing partial evaluation results induced by differing 

constants. 

21
 In the general case, prange and qrange computations may depend upon the properties of a and s (e.g.,  m, n, p, q) in addition to the 

neighborhood indexes (e.g.,  i and j), for this example the superfluous arguments are dropped to keep it simple. 

22 Defcomponent is AOG’s way of  defining method-like entities. It is an expression of the form (DefComponent MethodName (Object 

. ParameterPat) [Pre: PreName] [Post: PostName] Body) and is converted into a transformation equivalent to (⇒⇒⇒⇒ 

MethodName Formals Object EnhancedPattern Body PreName PostName) where Formals is the phase where operator 

and method inlining occurs, and EnhancedPattern is a pattern automatically derived from (MethodName Object . 

ParameterPat). The enhancements are added for use by the AOG system. 

 



  

  

The definition of ⊕⊕⊕⊕ creates the (?p ?q) summation loop using ?s’s methods (i.e., prange, 

qrange, w, row and col) to compute the  neighborhood values: 1) the ranges of  ?p and ?q , 2) the 

weights of neighborhood positions, and 3) the row and column positions with respect to ?a. The 

_MMXLoop transformation will eventually reshape the loop body into an MMX friendly form. It will be 

triggered during the RestructLoop phase after any other RestructLoop transforms with indexes 

that are less than 1 (e.g., 0).  

 

When this component is applied to (⊕⊕⊕⊕ a[i j] s), it will produce the binding list ((?s s) (?p 

p) (?q q) (?a a) (?m m) (?n n) (?i i) (?j j)) and rewrite (⊕⊕⊕⊕ a[i j] s)as 

 

 

(_sum (p q)  

  (_suchthat (_member p (prange s a[i j]))  

    (_member q (qrange s a[i j]))) 

         (*   a[(row s a[i j] p q)  

                (col s a[i j] p q)]  

     (w s a[i j] m n p q))  

  (tags (_on (RestructLoop 1) (_MMXLoop p q))) 

 

The methods of s will be recursively inlined. Both range methods reduce to (_range -1 1), the 

row method expression reduces to (+ i p) and the col method expression reduces to (+ j q).   

 

The  w method is more interesting. Its definition (slightly simplified) is: 

 

(Defcomponent W (s ?a[?i ?j] ?m ?n ?p ?q) 

  :pre gensignal 

 

(if  

   (|| (== ?i 0) (== ?j 0)  

 (== ?i (- ?m 1)) (== ?j (- ?n 1))) /*  Off Edge? */ 

   (then 0)                               /*Special Case*/ 

   (else                                    /*Default Case*/ 

      (if (&& (!= ?p 0) (!= ?q 0)))  



  

  

  (then ?q)  

          (else  

            (if (&& (== ?p 0) (!= ?q  0)) (then (* 2 ?q)) (else 0))) 

          (tags  

            (_on MigrationOfMe (_MapToArray ?p ?q)  

              (_Post ?signal1)  

              (_Post ?signal2)))))) 

   (tags (_on ?signal1 (__PromoteConditionAboveLoop ?p ?q)) 

         (_on ?signal2 (_MergeCommonCondition)) 

         (_on (RestructLoop 0) (_SplitLoopOnCases)))) 

 

When this component’s parameter pattern is matched against (w s a[i j] m n p q)  from the p 

and q loop body, it will produce the binding list ((?p p) (?q q) (?a a) (?m m) (?n n) 

(?i i)) (?j j) (?signal1 signal84) (?signal2 signal85)) where the two unique 

signal names are generated by the pre-routine gensignal. They will be used to sequence the 

transforms. 

 

These signals are introduced because of a little wrinkle – an ordering dependency. _MapToArray  

must execute before _PromoteConditionAboveLoop lest it cause mischief to _MapToArray ‘s 

enabling conditions in an attempt to set up its own enabling conditions. For the same reason, the 

transform _MergeCommonCondition, which tries to establish additional enabling conditions for  

_SplitLoopOnCases (by combining common off-edge tests), must also execute after both 

_MapToArray and _PromoteConditionAboveLoop. To assure the proper order of execution, 

the designer schedules these two transforms on the signals posted after completion of  _MapToArray 

by the two _Post  transforms.  

 

The act of inlining the definition of w generates a MigrationOfMe event, which indicates subtree 

movement, for any tag in w’s definition subtree that is waiting on this event. This event will cause 

_MapToArray to be scheduled as the first TD transform. _MapToArray replaces the if expression 

to which it is attached with a reference to a newly created vector name s[p,q], which it then sets 

about defining. First, it formulates the data declaration using the subtree to which it is attached as the 

body of a loop that will generate values for the newly created vector: 

 

int s[(prange s a[i j]) (qrange s a[i j])] =  

(_forall (p q) (_suchthat (_member p (prange s a[i j]))  

                  (_member q (qrange s a[i j])))  

         (if  (&& (!= p 0) (!= q 0))  

      (then q)  



  

  

              (else (if (&& (== p 0) (!= q 0))  

                       (then (* 2 q))  

            (else 0) )))) 

 

After substitution of the definitions of prange.s and qrange.s and partial evaluation of the whole 

expression, it simplifies to 

 

int s[(-1 1) (-1 1)]={{-1, 0, 1},{-2, 0 , 2},{-1, 0, 1}}. 

 

This is incorporated into a pending scope that will hold this definition (and perhaps others) until a later 

phase when they will be inserted at the proper place in the program. 

 

Upon completion of _MapToArray, the two _Post transformations run, posting signals signal84 

and signal85, which will cause scheduling of the transformations that are waiting on those signals. 

The (p q) loop now has the form 

 

(_sum (p q)  

 (_suchthat (_member p (_range –1 1)) (_member q (_range –1 1))) 

 (* a[(+ i p),(+ j q)] 

    (if (|| (== i 0) (== j 0)  

     (== i (- m 1)) (== j (- n 1)))   /*Off Edge?*/ 

        (then 0)                           /*Special Case*/ 

        (else s[p q])                                /*Default Case*/ 

           (tags (_on signal84 (_PromoteConditionAboveLoop p q)) 

                 (_on signal85 (_MergeCommonCondition)) 

                 (_on (RestructLoop 0) (_SplitLoopOnCases))))  

   (tags (_on (RestructLoop 1) (_MMXLoop p q))))) 

 

The signal84 event will cause  _PromoteConditionAboveLoop to run. In order to establish its 

own enabling conditions, which require the if statement be the first statement or operator in the 

body of the (p q) loop, it will call another transformation that distributes the (* 

a[i+p,j+q]...) expression over the if. This produces a then clause of  (* a[(+ i p) (+ 

j q)] 023) which with partial evaluation becomes 0 and an else clause of (* a[(+ i p) (+ 

j q)] s[p q]). It next finds the (= t1 ...) assignment surrounding it and also distributes that 

over the if. After these transforms have run, the expression is reduced to 

                                                           
23

 This zero started out as a summation loop just after distribution but partial evaluation simplified it. 



  

  

 

(if (|| (== i 0) (== j 0)  

 (== i (- m 1)) (== j (- n 1)))      /*Off Edge?*/ 

    (then (= t1 0))                   /*Special Case*/ 

    (else                                    /*Default Case*/ 

      (= t1 

         (_sum (p q)  

               (_suchthat (_member p (_range –1 1))  

               (_member q (_range –1 1))) 

              (* a[(+ i p) (+ j q)] s[p q])                              

       (tags (_on (RestructLoop 1) (_MMXLoop p q)))))) 

    (tags (_on (RestructLoop 0) (_SplitLoopOnCases)))) 

 

Next, _MergeCommonCondition runs to establish some more enabling conditions for loop splitting. 

A discussion of these details is beyond the space available in this paper. Once the array has been created 

and the edge test promoted above the (p q) loop, the scheduling queue is empty so, the next phase 

in the phase list  – RestructLoop – is posted. It will trigger _SplitLoopOnCases, which will 

restructure the (i j) loop that surrounds the expression shown above. 

 

This will effect the incorporation of each of the cases of the condition test 

 

(|| (== i 0) (== j 0) (== i (- m 1)) (== j (- n 1))) 

 

into a separate version of the (i j) loop, thereby producing the five loops in the MMX code shown 

earlier. _SplitLoopOnCases checks the enabling conditions, deconstructs both the loop control 

information and the branching test, and reformulates the single loop structure into five loops: 

 

(_forall (i j) (_suchthat (_member i (_range 0 (- m 1)))  

                  (_member j (_range 0 (- n 1)))  

             (== i 0))  

      (= b[i,j] 0)) 

(_forall (i j) (_suchthat (_member i (_range 0 (- m 1)))  

                  (_member j (_range 0 (- n 1)))  

          (== j 0))  

      (= b[i,j] 0)) 

(_forall (i j) (_suchthat (_member i (_range 0 (- m 1)))  

                  (_member j (_range 0 (- n 1)))  

          (== i (- m 1)))  



  

  

     (= b[i,j] 0)) 

(_forall (i j) (_suchthat (_member i (_range 0 (- m 1)))  

                  (_member j (_range 0 (- n 1)))  

          (== j (- n 1)))  

     (= b[i,j] 0)) 

(_forall (i j) (_suchthat (_member i (_range 0 (- m 1)))  

                  (_member j (_range 0 (- n 1)))  

          (!= i 0) (!= j 0)  

          (!= i (- m 1))(!= j (- n 1)))  

     ... default case (p q) loop ...) 

 

 

To simplify the generated control expressions, _SplitLoopOnCases invokes some lightweight 

inference using AOG’s built-in pattern language. The inference step uses a set of rules that recognize the 

idiomatic iteration patterns associated with specific simplication strategies. For example, suppose that 

the control variable i is really a fixed constant (i.e.,  

(_Suchthat (_member i (_range 0 (- m 1))) ... (== i 0))). This engenders 

elimination of the control variable i from the loop control altogether and the substitution of 0 

everywhere i appears in the loop body. That is,  (= b[i,j] 0)would become (= b[0,j] 0). The 

overall result is the form shown at the start of section 4.   

 

It is important to observe that this overall shaping process is largely search and analysis free because 

domain-specific information is used to plan the global optimizations. What transforms to run, when to 

run them, and what other prepatory transforms are required are all details that are mostly determined 

at the time that components are entered into the reusable library. Any conventional optimization 

methodology would have to do a substantial amount of analysis and search to determine which 

transforms to run and what order to run them in. 

 

5 Related Research 

Good general sources for some topics in this paper include the following: generative 

programming [5-6, 17]; transformations and meta-programming [17, 19, 35, 37, 44]; pattern 

matching [23, 43]; and LISP, CLOS and Prolog [14, 23, 24, 28, 31, 40]. 

 

Related areas of work include compiler building and language processing systems. Some 

examples are the ASF+SDF compiler system [41, 42], the DMS maintenance system [4], the 

Stratego system [43], and the TXL transformation system [15]. As a general characterization, 



  

  

such systems desire to specify languages and their processing with various domain-specific 

abstractions (e.g., syntactic or semantic domain languages) and from those generate working 

language processors (e.g., compilers, analyzers, maintainers, etc.). The most striking difference 

between these systems as a group and AOG is AOG’s emphasis on preserving and using problem 

domain knowledge in translation and optimization. Indeed, AOG provides a specialized control 

structure (i.e., AOG’s unique tag-directed transformations) and machinery specifically designed 

for this job. By contrast, this group of systems tends to provide the most tools and domain 

languages for more conventional translation and transformation jobs, e.g., parsing and 

expression rewriting. AOG has been used for but does not strongly emphasize parsing. While 

AOG has been used to parse large programs (e.g., AOG parses itself, its domain abstractions and 

some DSLs), the parsing of text-based programs is a minor goal for AOG. Its parsing machinery is 

based on AOG’s general purpose pattern engine and language, which is not highly specialized to 

parsing. AOG’s pattern language has a procedural orientation (i.e., it’s Prolog-like) and has the 

ability to express an arbitrary algorithms (i.e., it is Turing complete). Architecturally, it is an 

interpretive, user-extensible pattern matcher with backtracking. When AOG requires highly 

domain-specific languages (e.g., BNF-based grammar specifications or type inference rules), 

they are built as distinct domain languages that are translated into this general purpose pattern 

language.  

 

A final difference is that AOG’s PD transformations can be inherited. For example, some PD 

transformations are stored on types, and more specifically, on the most general type that 

subsumes all subtypes to which the transformation may be applied.  In summary, the major 

differences between these systems as a group and AOG are: 1) AOG’s general emphasis on 

preserving and applying domain knowledge to translation and optimization, 2) AOG’s unique 

tag-directed control structure, 3) AOG’s reduced emphasis on parsing, 4) AOG’s general purpose 

pattern language and matcher, and 5) AOG’s use of PD transformations with inheritance. 

 

AOG bears a strong relation to and uses ideas from Neighbors work (e.g., DSL to DSL refinement 

and intra-DSL optimization phases). [32-34] The main differences are: 1) AOG’s use of 

metaprograms aimed at narrowly specific generation problems (e.g., localization), 2) the fact 

that the AOG pattern-directed transformations are organized into a two-dimensional space of 

object and phase, which determines which transformations are candidates for execution  (i.e., 

which ones are visible), 3) AOG’s use of transformations with inheritance, 4) AOG’s control 

regime that provides scripts of explicitly named phases each of which defines a narrow 

translation job, and 5) the tag-directed control regime for architectural shaping optimizations.  

 

The work bears a conceptual relationship to Kiczales' Aspect Oriented Programming (AOP) in the 

common emphasis on non-conventional architectural structures (e.g., aspects) but the 



  

  

translation machinery appears to be different. [18, 29] AOP’s translation mechanism does not 

use a tag-directed control regime. In contrast, the AOG’s tags retain domain knowledge, 

anticipate optimizations, are distributed over the program, are triggered by events, and may 

undergo transformations as the generator reasons about the domain, the program, and the 

optimization tags. 

 

This work is largely orthogonal but complementary to the work of Batory. [2, 3, 6, 17] Batory 

optimizes type equations to choose components from which to assemble custom classes and 

methods. AOG inlines and interweaves the bodies of methods invoked by compositions of 

method calls (i.e., DSL expressions). Thus, Batory’s generation focus is at the class creation level 

and AOG’s is at the instance application level.  

 

AOG and Doug Smith's work are similar in that they make heavy use of domain-specific information in 

the course of generation. [38, 17] They differ in the machinery used. Smith's work relies more heavily 

on inference machinery than does AOG. The reasoning that AOG does is narrowly purposeful and is a 

somewhat rare event (e.g., the transformation that splits the loop in the MMX example does highly 

specialized reasoning about loop limits). However, partial evaluation (a form of inference) [17, 25, 44] 

is heavily used in AOG, which is how three level if-then-else expressions (which are interweavings of 

several neighborhood and operator definitions) get simplified to expressions like "a[im1,j]*(-2)". 

 

The organization of the transformations into goal driven stages is conceptually similar to the work of 

Boyle, et al [13, 21]. However, Boyle’s phases are implicit and built into the transformation 

metaprogram.  By contrast, AOG uses lists of explicitly named phases that act like scripts and can be 

altered or extended by the user for different contexts.  Further, the AOG work differs in that it uses 

domain-specific information to associate TD transformations tags with reusable components as early in 

their life as possible to eliminate search for transformations during the reshaping phases. 

 

The pattern language is similar to the work of Wile [46, 47] and Crew [16]. Popart leans more toward an 

architecture driven by compiling and parsing notions. As such, it is influenced less by logic programming. 

On the other hand, ASTLOG is more similar to the AOG pattern language in that it is influenced by logic 

programming [14, 31]. However, ASTLOG’s architecture is driven by program analysis objectives. It is a 

batch-oriented model that operates on a set of object files created by compile and link operations. Such 

a model is not well suited to dynamic manipulation and change of the AST under the control of a 

transformation-based generator.  In addition, AOG’s pattern language is distinguished from both 

ASTLOG and classic Prolog [14, 31] in that it does mostly local reasoning on the AST. That is, rather than 



  

  

operating on a large global data base all of which is always accessible, AOG’s “data base” (or focus) is 

some specified locale within the AST.  

 

There are a variety of other connections that are beyond the space limitations of the paper. For 

example, there are relations to other generators like SciComp’s [26], Intentional Programming [17], 

meta-programming and reflection [17, 37], formal synthesis systems (e.g., Specware) [17, 39], 

deforestation [45], the connection of goals and strategies to transformations [20] and other procedural 

transformation systems [30] (e.g., Refine). The differences are greater or lesser across this group and 

broad generalization is hard. However, the most obvious broad difference between AOG and most of 

these systems is AOG’s use of tag-directed transformations, which operate in the optimization domain 

and are triggered based on optimization-specific events. This makes the AOG control structure unusual, 

allowing planned, key optimizations to be attached to the reusable components they will optimize. Their 

effect is interleaved with opportunistic optimizations and partial evaluation simplifications. The overall 

optimization process behaves like an abstract algorithm where the algorithmic steps are phases and 

where the details of the steps (i.e., what operations are performed, what part of the AST they affect, 

and when they get called) are partly determined by tags on the AST itself. From a different point of view, 

the event driven transforms behave like interrupts that allow for operations whose invocation order 

cannot be planned in advance and whose effect is largely reorganization, architectural shaping, and 

simplification. 

6 Evaluation of AOG 

AOG is its own best customer. The main strategy for evaluating the AOG system is the use of AOG in the 

building of AOG. The pattern language -- the key DSL building block of both PD and TD transformations -- 

is used throughout AOG. At last count, there are more than 230 instances of its use within AOG. This is 

the deepest, most fundamental kind of reuse in AOG. Specifically, reuse of the pattern language occurs 

in: 

• The utility routines (e.g., tag list management); 

• The partial evaluator, which simplifies and canonicalizes newly created AST structures; 

• The type inference rules, which generate patterns for inferring the type of an AST subtree (e.g., 

90+ rules are required for basic programming language structures and the Image Algebra 

domain and another 14 are required for a container domain used by a GenVoca [2, 6] 

demonstration example discussed below); 

• AOG’s source navigator and cross reference tool
24

 uses the pattern engine to parse all of AOG 

(20-30KLOC) for the purpose of 1) computing and caching cross references, 2) recording the kind 

of each item (e.g., defun, transformation, defcomponent, pattern, etc.) along with its file 

                                                           
24

 Used for source code segmenting, searching, navigating, analyzing and managing.  



  

  

location, 3) computing an index of all items, 4) searching for individual items included in the 

index, and 5) rereading the source text for the navigator to display; and finally, 

• The pretty printer/source code generator uses about 30 or so PD transformations to generate C 

from the AST. 

A second dimension of evaluation addresses the issue of whether or not AOG can be applied to a wide 

variety of domains or is it just tailored for IA-like domains. The answer is that that it can be applied to 

any domain. To address this question of universality, I am implementing other DSLs for domains that are 

fundamentally different from IA. The first such implementation was the development of a GenVoca-like 

[2, 6] system on top of AOG. This required less than 40 lines of code to implement a general mechanism 

to manage GenVoca’s type vector (which is a list of layered, aspect-like components that control the 

choice among alternative definitions applied within those layers) and two lines of code to implement 

GenVoca’s AST traversal strategy.  Of course, the definition of any domain components (i.e., the 

reusable parts) to be translated by GenVoca requires additional work regardless of which GenVoca is 

being used. The amount of work required to define those domain components (e.g., container domain 

components) for the experimental AOG-GenVoca is roughly comparable to that required for the original 

GenVoca system. Specifically, the container domain data types are defined as AOG class instances (one 

line of code to define each new class) and each GenVoca component is defined as a AOG Defcomponent 

that is roughly the same size as the original GenVoca components. After that, 14 type inference rules 

were needed to define type inference in the container domain. In addition, for each domain component 

that needs to introduce new C data declarations into a scope that is some indefinite distance up the AST 

from the point at which the component is generated, one deferred transformation rule per new data 

definition is needed to dynamically create a deferred transformation. These deferred transformations 

eventually move the data declarations and field declarations (e.g., C typedefs and C fields in a typedef) 

into the correct scope and into the correct definition structure, once those scopes and definition 

structures are created. In the latest version of AOG, these deferred transforms could be eliminated 

because definition generation into non-existent but planned scopes is handled by a different, automatic 

mechanism.  

 

In summary, the creation of AOG-GenVoca on top of AOG was a few hours of work and the creation of 

the domain components for AOG-GenVoca was a couple of days or so (much of which was time spent 

understanding the domain). Further, the work to create new GenVoca target domains and new, reusable 

domain components is roughly comparable to that required by the original GenVoca. All of the domain 

components produced are reusable and therefore, could be applied to any target application 

development that used the target domain (e.g., containers). Since this exercise did not require all of 

AOG’s capabilities (e.g., neither partial evaluation nor TD transforms were needed), the opportunity 

exists to create an extended GenVoca with the capability to further tune the generated code to various 

computing platforms by appropriately tagging the existing reusable GenVoca components with TD 

transform expressions. This would allow additional reuse mileage from existing GenVoca components. 

 



  

  

Other similar experiments focusing on different transformation-based domain translators are in work. 

 

7 Conclusions 

The key ideas embodied in AOG are summarized below: 

 

• Control localization contributes a generalized framework for integrating and optimizing implicit, 

delocalized control structures. This generalizes the loop and language specific techniques of APL 

[22] in that it is user extensible (e.g., to new domains) and can coordinate a range of different 

kinds of interdependent controls. 

 

• Speculative Refinement contributes a way to incrementally propagate constraints and 

optimization decisions over a specific DSL expression via the dynamic creation of set of 

refinement transforms that are customized to the specific DSL expression.  

 

• Dynamically created, deferred transformations contribute a general method for putting 

generated code into contexts that have yet to be generated.  

 

• Organizing transformations into a two dimensional memory space (object and phase) reduces 

the number of transformations that have to be tried for each AST subtree. For the IA domain, it 

is generally zero, one or two. The maximum in that domain is less than ten. Allowing 

transformations to be stored under various kinds of objects (e.g., a translator generated symbol 

or a type) opens the door for inheritance of transformations as well as strategies for 

coordinating related design decisions among separated portions of a target program (e.g., 

Speculative Refinement). 

 

• Allowing PD transformations to be inherited from super classes (e.g., in the type hierarchy) 

raises the level of abstraction of transformations.  

 

• TD transformations preserve and exploit domain knowledge (e.g., the existence and 

relationships between image loops and neighborhood loops) in the form of tags that will 

orchestrate cooperating transformations, which taken as a whole, will derive desired, global 



  

  

architectural properties. This technique eliminates most of the computation required by more 

conventional optimization strategies that must discover what transformations are possible, 

what ordering constraints exist among them and what preparatory transformations are 

required. TD transformations allow a nearly search-free, distributed optimization plan to be laid 

out mostly in advance. The plan exploits all available knowledge (including domain knowledge) 

to reduce analysis and eliminate search. 

 

• TD transforms usually incorporate few newly invented optimizations (they reuse known 

optimizations) and taken as a group, perform no overall optimization process that, in theory, 

could not be performed by an appropriately integrated optimization system. However, they are 

unique in that they allow the user to assemble a customized set of cooperating optimizations 

that are tailored to a specific kind of DSL expression set in the context of a specific hardware 

platform. In other words, they provide the user the ability to fill in the many optimization gaps 

that evolving DSLs and evolving hardware platforms are constantly introducing. The user does 

not have to wait until someone builds that exact new optimization system or compiler that deals 

with the exact DSL and the exact hardware platform. He can take matters into his own hands by 

writing PD transforms to translate his DSL into any general purpose language supported by the 

hardware (e.g., C) or even translate his DSL into a special purpose DSL provided by the target 

hardware (e.g., a display processor DSL). Further, by adding TD transforms, he provides a 

mechanism to shape the general purpose or special purpose output code to the peculiarities of 

the target hardware. AOG’s contribution is in the search-free reuse, assembly and orchestration 

of well-known transformations to achieve desirable global architectures for specific 

computational environments. 

 

AOG is being developed to study of the effects of new generator architectures on programming 

leverage, variability, performance, and search space size. While still early, it has demonstrated that 

some operators and types can be deeply factored to allow highly varied re-compositions while 

simultaneously allowing the generation of high performance code without huge search spaces.  

 

Table 1 summarizes the problems, strategies and techniques discussed in this paper.  

 

Table 1: Explosion Control Strategies and Techniques 



  

  

Source of Explosion Explosion Control Strategy Techniques 

Numerous refinements 

and constraints explode 

derivation pathways 

Phased DSL to DSL Refinement – 

Incrementally translate from higher to 

lower level DSLs 

Mutual exclusion of DSLs 

produces a subsetting of 

refinement rules that hides 

irrelevant ones 

Complexity of 

generated code 

explodes code 

reorganization choices 

Inter-Refinement Optimization Phases 

– Apply specialized rules to simplify DS 

forms by mapping a DSL domain to 

itself: 

Mutual exclusion of domains 

implies a subsetting of 

optimization rules 

� Overly complex 

generated code 

explodes 

complexities of 

lhs patterns 

� Simplification – Direct 

reduction of the code by 

removing inefficiencies without 

reorganizing the code 

Partial evaluation is a 

metaprogram specialized to 

inefficiency removal, e.g., 

unrolling a loop over variable 

i  may allow simplifications 

such as    (x + i ) =>(x + 0) => x 

� Domain-specific 

Optimizations 

done at code 

level may 

explode search 

space 

� Domain-specific Optimizations 

done at correct domain level 

may use DSL knowledge to 

reduce search and analysis 

Use of domain knowledge 

leverages optimizations 

(e.g., knowledge of ATN 

domain leverages ATN state 

removal optimization) 

Implied related control 

structures spread across 

DSL expressions explode 

the choices in 

integrating those 

controls 

Localization – Generate customized, 

integrated control expressions from the 

implied control structures that are 

dispersed across DSL expressions 

Rule-based metaprogram 

specialized to merge and 

coordinate implied controls  

Speculative Refinement to 

produce customized 

refinements that coordinate 

localization constraints 

across expression 

Explicit grouping of 

localization rules by object 

(e.g., data type) and 

optimization goal (i.e., 

phase) to hide irrelevant 

rules 

Global constraints 

require coordinated 

global optimizations that 

explode constraint 

propagation choices 

Architectural Shaping – Metaprogram 

optimizations that reshape the 

computation to better fit global 

constraints while preserving its 

computational function 

Event-triggered Tag-

Directed Rules preserve 

domain-specific knowledge 

(via AST tags containing 

event-based rule 

invocations) for use in the 

code domain 
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