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Abstract. A serious problem of most transformation-based generators is that 
they are trying to achieve three mutually antagonistic goals simultaneously: 1) 
deeply factored operators and operands to gain the combinatorial programming 
leverage provided by composition, 2) high performance code in the generated 
program, and 3) small (i.e., practical) generation search spaces.  The hypothesis 
of this paper is that current generator control structures are inadequate and a 
new control structure is required. To explore architectural variations needed to 
address this quandary, I have implemented a generator in Common LISP. It is 
called the Anticipatory Optimization Generator (AOG1) because it allows 
programmers to anticipate optimization opportunities and to prepare an 
abstract, distributed plan that attempts to achieve them. The AOG system 
introduces a new control structure that allows differing kinds of knowledge 
(e.g., optimization knowledge) to be anticipated, placed where it will be needed, 
and triggered when the time is right for its use.  

Problems 

A serious problem of most transformation-based generators is that they are trying 
to achieve three mutually antagonistic goals simultaneously: 1) deeply factored 
operators and operands to gain the combinatorial programming leverage provided by 
composition, 2) high performance code in the generated program, and 3) small (i.e., 
practical) generation search spaces. This paper will make the argument that this 
quandary is due in large measure to the control structure characteristics of large 
global soups of pattern-directed transformations. While pattern-directed 
transformations make the specification of the transformations easy, they also explode 
the search space when one is trying to produce highly optimized code from deeply 
factored operators and operands. Since giving up the deep factoring also gives up the 
combinatorial programming leverage provided by the composition, that is not a good 
trade off.  

There are other problems in addition to the search space explosion. Pattern-
directed transforms provide relatively few tools for grouping sets of transformations, 
coordinating their operation, and associating them with a large grain purpose that 
transcends the fine grain structural aspects of the target program. For example, there 
are few and crude tools to express the idea that some subset of tightly related, 
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cooperating transformations is designed for the narrow purpose of creating, placing 
and merging loops in the target program.  

Along a similar vein, it is difficult to generate target code optimized for differing 
machine architectures from a single canonical specification. For example, one would 
like to be able to generate code optimized for a non-SIMD architecture and with the 
flip of a switch generate code optimized for a SIMD architecture. With conventional 
systems this is difficult. 

There is no way currently to record knowledge about the reusable components that 
may lead to optimization opportunities during the generation process. For example, 
the writer of a reusable component may know that a property of his component 
ensures that part of its code can be hoisted above a loop that will be generated to host 
the component. Conventional transformation systems allow no easy way to express 
and then later exploit such information.  

Similary, most conventional transformation systems provide no mechanism to 
record knowledge of future optimization opportunities that become known in the 
course of executing early transformations. Further, there is no way to condition such 
optimization opportunities upon optimization events (e.g., a substitution of a 
particular structure) or expected properties of the generated code (e.g., the 
requirement that an expression must have been simplified to a constant). 

Finally, there is no way to intermix (abstractly) planned optimization operations 
with opportunistic optimization operations that cannot be planned because the 
opportunities for these optimizations arise unpredictably as a consequence earlier 
transformations manipulating the target program code. 

We will introduce a new kind of transformation and a new control structure (called 
a tag-directed control structure) that can overcome much of the search space 
explosion problem and also can address these other problems. Let us review 
convention transformation architectures, contrast the new architecture with respect to 
these conventional systems and then examine how this new architecture addresses 
these problems. 

The New Control Structure 

Overview 

Conventional Transformation Systems. Conventionally, generic transformation 
systems store knowledge as a single global soup of transformations represented as 
rules of the form  

syntactic pattern ⇒⇒ reformulated structure 

The left hand side of the rule recognizes the syntactic form and binds matching 
elements of the program being transformed to transformation variables (e.g., 
?operator) in the pattern. If that is successful, then the right hand side of the rule 
(instantiated with the variable bindings) replaces the matched portion of the program. 
Operationally, rules are chosen (i.e., triggered) based largely on the syntactic pattern 



of the left hand side, which may include type constraints as well as purely syntactic 
patterns. Rules may include some set of additional constraints (often called enabling 
conditions) that must be true before the rule can be triggered. However, all of this is 
not entirely sufficient since pure declarative forms are often inadequate to express 
complex procedural transformations. Therefore, the rules of some systems also allow 
for arbitrary computations to occur during the execution of the rules.  

The operational form of the program being transformed may be text or, more 
typically in modern systems, an Abstract Syntax Tree (AST). In summary, the major 
control structure of generic transformation systems is based largely on the pattern of 
the program portion being transformed. Hence, we call such systems pattern-directed. 

Draco. Some transformation systems add control variations to enhance efficiency. 
For example, Draco [10] separates its rules into two kinds: 1) refinement rules, and 2) 
optimization rules. Refinement rules add detail by inlining definitions. Optimization 
rules reorganize those details for better performance. Further, the refinement rules are 
grouped into subsets that induce a set of translation “stages” by virtue of the fact that 
each group translates from some higher level domain specific language (e.g., the 
language of the relational algebra) into one or more lower level domain specific 
languages (i.e., ones that are closer to conventional programming languages, such as a 
tuple language). After each such refinement stage, optimization rules are applied to 
reorganize the current expression of the program into a more optimum form within 
the current domain specific language. The final output is a form of the program 
expressed in a conventional programming language such as C. While such generators 
usually produce programs with adequate performance and do so within an acceptable 
period of time, in some domains, the search space of the optimization phases tends to 
explode. 

Tag-Directed. A key insight of AOG (i.e., the use of tags to identify and trigger 
optimizing transformations) arose from an analysis of several transformation-based 
derivations of graphics functions. The derivations were quite long with a series of 
carefully chosen and carefully ordered transformations that prepared the program for 
the application of key optimizing transforms. The need to choose exactly the right 
transform at exactly the right point over and over again seemed like a long series of 
miracles that implied a huge underlying search space.  Further, I noticed that the 
choice of the various transformations depended only weakly on the patterns in the 
program. Rather they depended on other kinds of knowledge and relationships. Some 
of this was knowledge specific to the reusable components and could be attached to 
the components at the time of their creation. Other knowledge arose in the course of 
transformation operation (e.g., the creation of a data flow introduced by a preparatory 
transformation). Tags serve to capture such knowledge and thereby they became a 
key element of the AOG control structure. Such use of tags motivates the moniker of 
tag-directed transformations for those optimizing transformations that are triggered 
largely because of the tags attached to the AST. In triggering these optimizing 
transformations, patterns play a lesser role. 

Event Triggering. The transformation name in a tag indicates what 
transformation to fire but not when. Thus, the tag control structure includes the idea 
of local and global events associated with the tag structure that indicate when to fire 
the transformations. Global events, which apply to the whole subtree being operated 
on, provide a way to induce a set of optimization stages. Each stage has a general 
optimization purpose, which assures certain global properties are true upon 



completion of the stage. For example, all loop merging is complete before 
commencing the stage that triggers certain kinds of code hoisting outside of loops. 
Local events, on the other hand, are events specific to an AST subtree such as its 
movement or substitution. Local events occur in the course of some other 
transformation’s operation. Local events allow opportunistic transformations to be 
interleaved among the transformations triggered during a stage. 

Components. Another control structure innovation is to represent passive and 
active components by different mechanisms. Passive components (just called 
components) are those for which one can write a concrete, static definition. These 
comprise the library reusable piece parts from which the target program will be built 
and they are represented in an Object Oriented hierarchy. For example, one of the 
data types specific to the graphics domain language that I use is a Neighborhood, 
which is a subset of pixels in a larger image centered on some specific pixel within 
that larger image. Specific instances of neighborhoods are defined via functional 
methods that compute: 1) the indexes of neighborhood pixels in terms of the image’s 
indexes (Row and Col), 2) a set of convolution weights associated with individual 
pixel positions within the neighborhood (W), and 3) the range of the relative offsets 
from the centering pixel (PRange, QRange). These methods, like conventional 
refinement rules, will be inlined and thereby will form portions of the target program. 

The operator components (e.g., the convolution operator ⊕⊕) are defined in the 
operator subtree of this OO hierarchy and act like multi-methods whose definition is 
determined by the type signature of the operator expression. For example, “(⊕⊕  array 
[iterator, iterator], neighborhood)” is a signature that designates a method of ⊕⊕ with a 
static, inline-able definition which will become the inner loop of a convolution. 

Transformations. The transformations are the active components and are 
represented as executable functions rather than isolated declarative rules. This allows 
them to handle high degrees of AST variation; compute complex enabling conditions; 
and recognize why enabling conditions are failing and take actions to fix them (e.g., 
by directly calling another transformation). Representing such transformations as 
conventional rules would require splitting them up into a number of individual 
transformations which would thereby explode the generator search space. Larger 
grain transformations that are implemented as programmable functions prevent this 
explosion. 

Kinds of Transformations. AOG transformations come in two flavors – pattern-
directed and tag-directed. Pattern-directed transformations are used for program 
refinement stages and tag-directed are used for optimization stages. Pattern-directed 
transformations are organized into the OO hierarchy to help reduce the number of 
candidate transformations at each point in the AST. That is to say, the OO hierarchy 
captures a key element of the pattern – the type of the subtree being processed, which 
saves looking at a large number of transformations that might syntactically match but 
semantically fail. 

Partial Evaluation. Like mathematical equations, reformulations of program parts 
require frequent simplication. If simplifications are represented as isolated 
transformations in a global soup of transformations, they explode the search space 
because they can be applied at many points, most of which are inappropriate. 
Therefore, AOG contains a partial evaluator that is called for each new AST subtree 



to perform that simplication. A partial evaluator is a specialized agent that simplifies 
expressions without exploding the search space. 

Now let us examine these ideas in the context of an example. 

Related Interdependent Knowledge 

Sometimes a priori knowledge about the interdependence of several aspects of a 
problem implies a future optimization opportunity and using this knowledge in course 
of generation can reduce the generator’s search space. For example, a component 
writer may know that in a particular architectural context (e.g., a CPU without parallel 
processing instructions) a specific optimization will be enabled within a component 
and will be desirable at a particular stage of generation. How should such knowledge 
be captured? Where should it be kept? And how should the optimization be triggered? 
Let us look at a concrete example of this situation.  

Suppose that the component writer is creating a description of a pixel 
neighborhood (call it s) within a graphics image and that description will be used in 
the context of graphics operators such as the convolution2 operator. This 
neighborhood description comprises a set of methods of s that describe the size and 
shape of the neighborhood, the weights associated with each relative position in the 
neighborhood, how to compute the relative positions in terms of the [i,j] pixel of 
the image upon which the neighborhood is centered, and any special case processing 
such as the special case test for the neighborhood hanging off the edge of the image. 
Let us consider the method that defines the weights for a particular neighborhood s. 
If any part of the neighborhood is hanging off the edge of the image, the weight will 
be defined as 0. Otherwise, the weights will be defined by the matrix: 
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where p and q define the pixel offset from image pixel upon which the neighborhood 
is centered. The diamond bracketed entry indicates the center of the neighborhood. 
Then the definition of the weight method w for pixel [p,q] in the neighborhood s is 
defined by the following pseudo-code, where s is centered on the [i,j] pixel of an 
m x n image: 

 
w.s(i,j,m,n,p,q) ⇒⇒  
{if ((i==0) || (j==0) || (i==(m - 1)) || (j==(n - 1)))  
    then 0;  

                                                        
2 A convolution is a graphics operator that computes an output image b from an input image a 

by operating on each neighborhood around each pixel a[i,j] to produce the corresponding b[i,j] 
pixel. Specifically, the operation is a sum of products of each of the pixels in the 
neighborhood around a[i,j] times the weight value defined for that pixel in the neighborhood. 



    else {if ((p!=0) && (q!=0))  
  then q;  
  else {if ((p==0) && (q!=0))  
         then (2 * q); else 0 }}} 
 
What does the component writer know about this component that might be helpful 

in the course of code generation? He knows that the eventual use of the weight 
calculation will be in the context of some image operator (e.g., a convolution). 
Further, that context will comprise a 2D loop iterating over the neighborhood that will 
be nested within another 2D loop iterating over the whole image. Further, the 
component writer knows that the special case test is not dependent on the 
neighborhood loop and, therefore, the test can be hoisted outside of the neighborhood 
loop. Or equivalently, the loop can be distributed over the if statement producing an 
instance of the loop in both the then and else clauses.  

Since the specific instance of the image operation has not been chosen and these 
loops have not yet been generated,  the component writer cannot execute the potential 
transformation yet. The component writer can only use the abstract knowledge that 
defines, in general terms, the eventual solution envelope. What he would like to do is 
to associate a piece of information with the if statement that would indicate the 
transformation to be invoked and some indication of when it should be invoked. AOG 
provides a mechanism for accomplishing this by allowing the component writer to 
attach a tag (to be used by the generator) to the if statement. In this case, the tag has 
the form: 

 
(_On SubstitutionOfMe  
     (_PromoteConditionAboveLoop ?p ?q)) 
 

This tag is like an interrupt that is triggered when the if statement gets 
substituted in some context, i.e., when a local substitution event happens to the if 
statement. When triggered, the tag will cause the 
_PromoteConditionAboveLoop transform to be called with the name of the 
target loop control variables (i.e., the values p and q, which will be bound to the 
generator variables ?p and ?q) as parameters. The transform will find the loops 
controlled by the values of p and q, check the enabling conditions, and if enabled, 
perform the distribution of the loop over the if statement. Thus, 
_PromoteConditionAboveLoop will transform a form like 

 
{ΣΣp,q  (p ∈∈ [-1:1] ) (q ∈∈ [-1:1] ) :   
 { if(i==0 || j==0 || i==m-1 || j==n-1)  
    /* Off edge */ 
     then <special case processing>;    
    else <general case processing> }}   

 
into a form like 

 
{ if(i==0 || j==0 || i==m-1 || j==n-1) /* Off edge */  
  then {ΣΣp,q (p ∈∈ [-1:1] ) (q ∈∈ [-1:1] ):  



    <special case processing>} 
  else {ΣΣp,q (p ∈∈ [-1:1] ) (q ∈∈ [-1:1] ):  
    <general case processing>} }    
 
Thus, with these ideas, we have introduced a new kind of transformation, which 

we will call a tag-directed transformation. Such transformations are triggered by 
events, in contrast to conventional pattern-directed transformations that are triggered 
largely by patterns in the AST (Abstract Syntax Tree). Another difference from 
pattern-directed transformations is that tag-directed transformations and their host 
tags can capture knowledge that is not easily derivable from the AST patterns or 
operator/operand semantics. Such knowledge would require some deep inference, 
some sense of the optimization opportunities particular to the evolving program or 
some knowledge that is fleetingly available in the course of transformation execution. 
For example, the tag-directed example we examined takes advantage of several 
interrelated knowledge nuggets that have little to do with the structure of the AST:  
1) the knowledge of the case structure of the reusable component s where the 

general purpose of the branching is known (i.e., one branch is a special case), 
2) the knowledge that the reusable component will be used in the context of 

neighborhood loops whose general purpose is known a priori, 
3) the knowledge that the if condition within the component is independent of the 

anticipated neighborhood loops,  
4) the optimization knowledge that executing an if test outside of the loop 

instead of within the loop is more computationally efficient, and  
5) the generation knowledge that attaching an interrupt-like tag (incorporating all of 

this special knowledge) to the reusable component will produce search space 
reduction advantages by eliminating the search for which transform to fire, where 
to apply it in the AST, and when to fire it.  

The key objective of tag-directed transformations is to reduce the generator search 
space explosion that arises when each transformation is just one of many in a global 
soup of transformations. By using all of this knowledge together, we can eliminate 
much of the branching in the search space (i.e., eliminate all of the alternative 
transformations that might apply at a given point in the generation) because tags 
supply all of the information needed to make the choice of transformation. They 
determine: 
1) which transformation is called (i.e., it is explicitly named in the tag),  

2) when it is called (i.e., when the named event occurs), and  
3) where in the AST to apply the transform (i.e., it is applied to the structure to 

which the tag is attached). 

The Likelihood of Optimization Opportunities 

Not all knowledge that one might want to use is deterministic. Often, there is just 
the likelihood that some optimization friendly condition may occur as a result of code 
manipulation. This knowledge too is valuable in keeping the search space from 
exploding while simultaneously achieving important generation goals such as 



eliminating redundant code. An example of this situation is illustrated by the 
expression for Sobel edge detection in bitmapped images.  

 
DSDeclare image a, b :form ( array m n) :of bwpixel;  
b = [ (a ⊕⊕ s)2 + (a ⊕⊕ sp)2]1/2 ; 

 
where a and b are (m X n) grayscale images and ⊕⊕ is a convolution operator that 
applies the template matrices s and sp to each pixel a[i,j] and its surrounding 
neighborhood in the image a to compute the corresponding pixel b[i,j] of b. s 
(whose w method was defined earlier) and sp are OO abstractions that define the 
specifics of the pixel neighborhoods. It is possible and indeed, even likely that the 
special case processing seen in the w method of s  will be repeated in the w method of 
sp. If so, it would be desirable to share the condition test code if possible by applying 
the _MergeCommonCondition transformation: 
 
{ if ?a then ?b else ?c; if ?a then ?d else ?e } 
=>  if ?a then {?b; ?d} else {?c ; ?e} 

 
where the ?x syntax represents generator variables that will be bound to subtrees of 
the AST. In the above example, ?a will be bound to the common special case 
condition code that tests for the neighborhood hanging partially off the edge of the 
image. Because the component writer anticipates this possibility, he would like to 
hang a tag on the if statement in the w definitions of s and sp that will cause the 
_MergeCommonCondition transformation to be called. If the condition code is 
common and all other enabling conditions are met, it will perform the transformation. 
However, this raises a question. What event should this transformation be triggered 
on? 

Local events like substitution of the subtree would be a bad choice because there is 
no easy way to assure ordering of the strategic computational goals of the overall 
optimization process. For example, we want all code sharing across domain specific 
subexpressions (i.e., global code manipulations) to be completed before any in-place 
optimizations (i.e., mostly local manipulations) begin. The approach used by AOG is 
to separate the strategic processing into phases that each have a general purpose such 
as  
1. inlining definitions (e.g., substituting the method definition of w.s),  
2. sharing code across expressions (e.g., sharing common test conditions),  
3. performing in-place optimizations (e.g., unrolling loops), and  
4. performing clean up optimizations (e.g., eliminating common subexpressions). 

These phases behave like an abstract algorithm where the details of the algorithmic 
steps come from the transformations mentioned in the tags attached to the 
components. The start of each stage is signaled by the generator posting a global 
event that will cause all tags waiting on that event to be scheduled for execution. This 
is how _MergeCommonCondition gets called to share the condition test code 
common to w.s and w.sp. It is scheduled when the global event signalling the start 
of the cross expression code sharing is posted by AOG. 

So, here we have a new control structure construct that allows a useful separation 
of concerns. The generator writer provides the broad general optimization strategy by 



defining stages, each with a narrow optimization goal. The component writer at 
library creation time (or a transformation during generator execution) adds tags that 
supply the details of the steps. This means that the generator writer does not have to 
account for all the possible combinations of purposes, sequences, enabling conditions, 
etc. He only has to create one (or more) abstract algorithms (i.e., define a set of 
stages) that are suitable for the classes of optimization that might occur. Similarly, the 
component writer (or transformation writer in the case where the tags are dynamically 
added to the AST) can add tags that take advantage of every bit of knowledge about 
the components, even possibilities that may or may not arise in any specific case. This 
kind of separation of concerns avoids much of the search space explosion that occurs 
when all of the strategic goals, component-specific details, and their 
interdependencies reside in one central entity such as the generator’s algorithm or in a 
global soup of transformations.  

The view that tag-directed transforms are like interrupts is an apt simile because 
they mimic both the kind of design separation seen in interrupt-driven systems as well 
as the kind of operational behavior exhibited by interrupt-driven systems. 

Simplification Opportunities 

Not all optimizations fit the tag-directed model. There are many opportunities for 
simplification by partial evaluation. In fact, any newly formed AST subtree is a 
candidate for such simplification and each transformation that formulates new 
subtrees immediately calls the partial evaluator to see if the subtrees can be 
simplified. For example, during the in-place optimization phase, one of the 
neighborhood loops is unrolled by a tag-directed transformation. The pseudo-code of 
the internal form of the loop looks like: 

 
{_sum (p q)  (_suchthat (_member p (_range -1 1))  
                   (_member q (_range -1 1))) 
      {if ((p!=0) && (q!=0))   
     then (a[(i + p),(j + q)]*p);     
     else {if ((p!=0) && (q==0))  
         then (a[(i + p),(j + q)]*(2*p));  
         else 0;}}} 
 
where the _sum operator indicates a summation loop and the _suchthat clause 

indicates that p and q range from –1 to +1. This produces two levels of loop 
unwrapping. In the course of the first level of unwrapping (i.e., the loop over p), one 
of the terms (i.e., the one for (p==1) ) has the intermediate form: 

 
{_sum (q) (_suchthat (_member q (_range -1 1)))  
     {if  (q!=0)  
   then a[(i+1),(j+q)] ;  
   else {if (q==0) then (a[(i+1),(j+q)]*2);  
                       else 0;}}} 
 
When the remaining loop over q is subsequently unrolled, we get the expression 



 
({if (-1!=0)  
     then a[(i+1),(j-1)] ;   
     else {if (-1==0) then (a[(i+1),(j-1)]*2);  
         else 0;}} 
+ {if (0!=0)  
      then a[(i+1),(j+0)];  
      else {if (0 == 0) then (a[(i+1),(j+0)]*2);   
           else 0;}} 
+ {if (1!=0)  
      then a[(i+1),(j+1)] ;  
      else {if (1 == 0) then (a[(i+1),(j+1)]*2);   
           else 0;}}) 
 
The unroll transform calls the partial evaluator on this expression which produces 

the final result for this subloop: 
 
(a[(i+1),(j-1)] + (a[(i+1),j]*2) + a[(i+1),(j+1)]) 
 
In the same way, the other derived, nested loops produce zero or more analogous 

expressions for a total of six terms for the original loop over p and q. 
Partial evaluation is critical because it allows future transformations to execute. 

Without it, many future transformations would fail to execute simply because of the 
complexity of detecting their enabling conditions or the complexity of manipulating 
un-simplified code. 

Partial evaluation is the most executed transformation. For the Sobel edge 
detection expression, 44 out of a total of 92 transformations required to generate code 
are partial evaluation.  

Architectural Knowledge 

No aspect can have a larger effect on the final form of the generated code than the 
architecture of the CPU. Consider the two different sets of code produced by AOG for 
a CPU without parallel instructions and one with parallel instructions (i.e., the MMX 
instructions of the PentiumTM processor). 

For a single CPU Pentium machine without MMX instructions (which are SIMD 
instructions that perform some arithmetic in parallel), the AO generator will produce 
code that looks like 

 
for (i=0; i < m; i++)   /* Version 1 */  
    {im1=i-1; ip1= i+1;  
     for (j=0; j < n; j++) 
          { if(i==0 || j==0 || i==m-1 || j==n-1)    
    then b[i, j] = 0; /* Off edge */ 
     else {jm1= j-1; jp1 = j+1; 
        t1 = a[im1,jm1]*(-1)+a[im1,j]*(-2) +  
              a[im1,jp1]*(-1)+a[ip1,jm1]*1 +  



              a[ip1,j]*2+a[ip1,jp1]*1; 
        t2 = a[im1,jm1]*(-1)+a[i,jm1]*(-2) +  
              a[ip1,jm1]*(-1)+a[im1,jp1]*1 +  
              a[i,jp1]*2+a[ip1,jp1]*1;  
         b[i,j] = sqrt(t1*t1 + t2*t2 )}}} 

 
This result requires 92 large grain transformations and is produced in a few tens of 

seconds on a 400 MHz Pentium. In contrast, if the machine architecture is specified to 
be MMX, the resultant code is quite different: 

 
{int s[(-1:1), (-1:1)]={{-1, 0, 1}, {-2, 0 , 2},  
           {-1, 0, 1}};/* Version 2 */ 
int sp [(-1:1), (-1:1)]={{-1, -2, -1}, {0, 0, 0}, 
            {1, 2, 1}}; 
for (j=0; j<n; j++) b[0,j] = 0; /*Zero image edge */ 
for (i=0; i<m; i++) b[i,0] = 0; /*Zero image edge */ 
for (j=0; j<n; j++) b[(m-1),j] = 0;/*Zero image edge */ 
for (i=0; i<m; i++) b[i,(n-1)] = 0;/*Zero image edge */ 
{ for (i=1; i < (m-1); i++)    /*Process inner image */ 
  { for (j=1; j < (n-1); j++)  
      {t1 = unpackadd(padd2(padd2(pmadd3(&(a[i-1,j-1]),  
                      &(s[-1, -1])),  
               pmadd3(&(a[i, j-1]),  
                      &(s[0, -1]))),  
                   pmadd3(&(a[i+1,j-1]), 
            &(s[ 1, -1]))); 
       t2 = unpackadd(padd2 (pmadd3 (&(a[i-1, j-1]),  
              &(sp [-1, -1])),  
                      pmadd3 (&(a[i+1, j-1]),  
              &(sp [0,-1]))))); 
       b[i,j] = sqrt(t1*t1 + t2*t2);}}} 

 
where the routines unpackadd, padd2, and pmadd3 correspond to MMX 

instructions and are defined as pmadd3 ((a0, a1, a2) , (c0, c1, c2)) 
= (a0*c0+a1*c1, a2*c2+0*03), padd2 ((x0, x1) , (x2, x3)) 
= (x0+x2, x1+x3), and unpackadd((x0, x1)) = (x0+x1). All lend 
themselves to direct translation into MMX instruction sequences. In this example, s 
and sp have become pure data arrays to optimize the use of the MMX instructions. 
Notice, that the special case that tests to see if the template is hanging over the edge 
of the image, has completely disappeared. Transformations have split the main loop 
on that test, turning the single loop of the previous version into five loops by 

                                                        
3 MMX instructions use registers containing an even number of operands to be operated on in 

parallel. Thus, pmadd3 is just a special case of pmadd4((a0, a1, a2, a3), 
(c0, c1, c2, c3)) with a zero padded fourth operand in each of the registers a and 
c. pmadd4 is defined as (a0*c0+a1*c1, a2*c2+a3*c3). Thus, pmadd3 
((a0, a1, a2) , (c0, c1, c2))  is actually the special case pmadd4 
((a0, a1, a2, 0) , (c0, c1, c2, 0)). 



incorporating the special case test logic into the loop control logic. Four of the loops 
plug zeros into the four edges of the image (i.e., the new form of the special case 
processing) and one loop processes the inside of the image (i.e., the non-special case 
processing). The fundamental difference in the derivation of the two versions is in the 
tag driven optimization phase. Up to that stage, the transformations that fire are the 
same, resulting in two programs that are the same except for the tags.  

How do we get such dramatic differences from the same specification expression? 
The short answer is that there are differently tagged reusable components for each 
architecture. The reusable component definitions look like 

 
if (?MMX == ‘MMX) then <MMXDefinition>  
          else <NonMMXDefinition> ; 
 
Given a global generator variable (say ?MMX) bound to a value indicating the target 

architecture, partial evaluation of the reusable components will result in differently 
tagged definitions for each architectural variation. Thus, after this partial evaluation, 
the weight method of s for the MMX architecture will have some additional tags that 
are MMX specific. 

In order to exploit MMX instructions, the generated code needs to have a couple of 
important architectural properties. The weights need to be formed into a vector to 
exploit the vector processing of the MMX instructions. Ideally, this should happen at 
generation time but failing that, it could happen at target program execution time by 
computing all weights first and then using the resulting vector to compute the 
convolution. The second important architectural property is a branch free expression 
of the convolution computation so that the vector processing instructions will not be 
interrupted by branch instructions.  

Let’s us sketch how these properties are achieved. We will start with getting s and 
sp into vector form. This is accomplished by attaching the tag 

 
(_On SubstitutionOfMe  (_MapToArray)) 

  
to the non-special case branch of w.s and w.sp. For w.s, this branch would be 

the expression 
 
{if ((p!=0) && (q!=0)) then q;  
     else {if ((p==0) && (q!=0)) then (2*q); else 0 }} 
 
When triggered,  _MapToArray replaces this expression with a reference to a 

vector s[p,q] which it then sets about creating. First, it formulates the data 
declaration 

 
int s[(pRange.s), (qRange.s)]=  
{∀∀p,q (p ∈∈ pRange.s ) (q ∈∈ qRange.s ) :  
         {if ((p!=0) && (q!=0))  
     then q;  
             else {if ((p== 0)&&(q!=0)) then (2*q);  

            else 0 }}} 
 



which after substitution of the definitions of pRange.s and qRange.s followed 
by partial evaluation, becomes 

 
int s[(-1:1),(-1:1)]={{-1, 0, 1},{-2, 0 , 2}, 
          {-1, 0, 1}} 
 
The next job is to get rid of the branching in the loop body. This is handled by the 

attached tag4 
 
(_On CFWrapUpEnd(0) ( _SplitLoopOnCases)) 

 
to the top level if statement in w.s. This will effect the incorporation of each of 

the cases of the condition test 
 
((i==0) || (j==0) || (i==(m - 1)) || (j==(n - 1))) 
 
into a different loop, thereby producing the five loops in the MMX code shown 

earlier. _MapToArray checks the enabling conditions, deconstructs both the loop 
control information and the branching test, and reformulates the single loop structure 
into 

 
{∀∀i,j ((i  ∈∈[0:(m-1)]) && (j  ∈∈[0:(n-1)]) && (i==0)):  

 b[i,j] = 0 } 
{∀∀i,j ((i  ∈∈[0:(m-1)]) && (j  ∈∈[0:(n-1)]) && (j==0)):  
 b[i,j] = 0 } 
{∀∀i,j ((i  ∈∈[0:(m-1)]) && (j  ∈∈[0:(n-1)]) && (i==(m-1)):  
 b[i,j] = 0 } 
{∀∀i,j ((i  ∈∈[0:(m-1)]) && (j  ∈∈[0:(n-1)]) && (j==(n-1)):  
 b[i,j] = 0 } 
{∀∀i,j ((i  ∈∈[0:(m-1)]) && (j  ∈∈[0:(n-1)]) && (i!=0) && 
       (j!= 0) && (i!=(m - 1)) && (j!=(n - 1))):   
 … non-special process…} 
 
To simplify the control expressions, _MapToArray invokes some lightweight 

inference and uses AOG’s built-in schema language to perform that inference. (See 6 
for more details of the schema language and this inference operation.) It uses a set of 
rules that recognize an iteration pattern and thereby, determine how to simplify the 
loop control and the loop body. For example, suppose that the control variable i is 
really a fixed constant (e.g., (i  ∈∈[0:(m-1)]) && i==0)). This would 
engender elimination of the control variable i from the loop control and substitution 
of 0 everywhere i appears in the loop body. Other rules recognize patterns such as 
those that require clipping the upper and/or lower limits of the control range, which is 
how the non-special processing loop control is generated. 

                                                        
4 CFWrapUpEnd is the event signalling the clean up optimization phase and the zero 

parameter on the event indicates that it should be scheduled before any other transforms in 
that phase that have larger parameters. 



There is still more massaging to do. At this point, the non-special processing loop 
body looks like 

 
{t1= {ΣΣp,q (p∈∈[-1:1])(q∈∈[-1:1]):a[(i+p),(j+q)]*s[p,q]} 
 t2= {ΣΣp,q (p∈∈[-1:1])(q∈∈[-1:1]):a[(i+p),(j+q)]*sp[p,q]} 
 b[i,j] = sqrt(t1*t1 +  t2*t2);} 
 
The loops over p and q (i.e., {ΣΣp,q: … } ) arose from the definition of the 

convolution operator, which was defined by the “(⊕⊕  array [iterator, iterator], 
neighborhood)”  method of the ⊕⊕ operator 

 
(a[i,j] ⊕⊕  s) ⇒⇒  
   {ΣΣp,q (p∈∈ pRange.s) (q∈∈qRange.s ):  
         {a[row.s(i,j, m, n, p,q),col.s(i,j, m,n,p,q)]  
  * w.s(i,j,m,n,p,q) }} 
 
and which has a tag of the form 
 
(_ON CFWrapUpEnd(1)  (_MMXLoop)) 
 
attached to its loop. Because the tag was preserved during definition inlining, this 

tag is now attached to both of the loops over p and q since they are derived from the 
definition of the convolution operator. The _MMXLoop transformation will massage 
these loop controls and loop bodies into the form shown in the final MMX pseudo-
code shown earlier. 

Creation, Placement, and Merging of Loops 

The interrupt style control structure of tag-directed transformations is not ideal for 
all generator operations. There is still a role for pattern-directed transformations for 
some refinement-like operations. Even so, a large global soup of pattern-directed 
transformations is not optimal from a search-space point of view so we will adapt that 
model to the job required by AOG. 

The pattern-directed processing (which precedes the tag-directed processing) 
performs loop introduction, placement and merging. In the course of that, it may also 
perform some opportunistic optimizations (e.g., reduction in strength of the square 
operator). At the end of the pattern-directed processing, the example has the following 
form expressed in a C-ish pseudo-code. 

 
for (i=0; i < m; i++)   
 {for (j=0; j < n; j++)  
   {t1 = (a[i,j] ⊕  ⊕ s);  
    t2 = (a[i,j] ⊕⊕ sp);   
    b[i,j] = sqrt(t1*t1 +  t2*t2)  }} 
 



Like APL, AOG operators use implicit looping. This simplifies the specification 
code in that most domain operations can be written as loop-free expressions of 
operators and operands. It also makes manipulation of the code much simpler than if 
the programmer where allowed to program arbitrary loops. However, it makes AOG’s 
job harder in that it must generate the loops and figure out how to eliminate redundant 
looping operations. It does this by executing an abstract algorithm comprising three 
phases. 
1) Walk down the expression tree reducing operators and adding tag information 

that describes the implicit looping, 

2) Walk back up the tree moving and merging the looping information to eliminate 
redundant loops, and 

3) Walk over the tree again generating loop code, adding tags needed by the tag-
directed phase, and executing opportunistic optimizations (e.g., the reduction in 
strength optimization of the expressions (a[i,j]⊕⊕s)2 and   
(a[i,j] ⊕ ⊕sp)2 ). 

Like the tag-directed phases, the details of the abstract algorithm operations are 
contained in the code of the transformations. However, the control structure inherent 
to loop creation and placement does not lend itself to the interrupt-like design of the 
tag-directed transformations. As the looping data is moved up the expression tree, the 
rules by which it is transformed and merged are largely determined by the patterns 
and semantics of the operators and operands in the tree. This suggests that pattern-
directed transformations would provide a more suitable control structure. However, a 
large global soup of pattern-directed transformations  tends to explode the search 
space because too much computation is required to discover which transformations to 
fire. Since the transformation of the looping information is naturally organized as 
case-based logic dependent almost exclusively on the semantics of the operators and 
operands, a small set of candidate transformations is immediately obvious from the 
operator and operand types in the AST. Thus, the most natural organization for the 
transformations is to attach them to the domain specific operator and operand classes 
in the inheritance hierarchy (and group them by phase). This significantly reduces the 
search space. Operationally, the loop placement control simply walks over the 
expression tree and executes any phase-specific transformations attached to the 
operator and operand definitions. The pattern-directed phases of AOG are described 
in detail elsewhere [4]. 

Summary 

In summary, the new control structure is designed to reduce the generator’s search 
space as much as possible while still allowing deep factorization of reusable 
componentry and high degrees of optimization of the target code. There are two major 
phases (i.e., pattern-directed refinement and tag-directed optimization) and the control 
constructs of each are optimized for the goals of the underlying phases. Each major 
phase is subdivided into minor phases, each of which has a narrowly specific 
generation goal. 



The pattern-directed control structures are designed to optimize the generation, 
placement, and merging of looping constructs. Because the operator and operand 
types naturally separate the relevant transformations into small groups, the inheritance 
hierarchy is used as an index to these small groups. The transformations are further 
grouped by minor phase, which further diminishes the number of choices at any point. 
By these techniques, the generator’s search space is significantly reduced because 
there are usually only a handful of transformations to check at any point in the AST. 
This organization thwarts most of the search space explosion induced by a generator 
architecture that relies on global sets of transforms using pattern-directed triggering. 

The minor phases behave like an abstract algorithm (i.e., a strategy) with the 
pattern-directed transformations supplying the tactical details. This separation of the 
strategic from the tactical makes the addition of new operator and operand types quite 
easy.  

Optimization is a process of reorganizing the code to accommodate the 
architectural properties of the CPU. Such code movement requires a different control 
structure – a tag-directed control structure -- to minimize its search space. Like the 
pattern-directed control structure used to generate and optimize loops, the tag-directed 
control structure also separates the strategic from the tactical. The strategic elements 
are defined by a set of minor phases with very specific computational goals. 
However, the tag-directed mechanism differs from the pattern-directed in its 
interrupt-like triggering mechanism and in its organization. The search space 
reduction with tag-directed transformations is wrought by 
• Locating the tag at the point of application in the reusable components, 
• Naming the specific transformation so that no search is required to determine 

which transformation should be applied at a  given point in time, 
• Using as much a priori knowledge (e.g., domain specific knowledge) as possible to 

further narrow the computational purpose and therefore, the search space, and 
• Using an arbitrarily rich model of local and global events to trigger the 

transformations named in the tags. 
Fundamentally, the tag-directed process is a scheduler that keeps a queue of events 

that have triggered tags. It simply runs until the event queue is empty. Each minor 
phase is initiated by the posting of a global event naming the phase. When there are 
no more phases and the queue is empty, tag-directed processing terminates. This 
control structure relies on the transformations 
1. To post local events (e.g., substitution, migration, simplification), 
2. To handle their own enabling condition checking and to directly call other 

transformations to fix up enabling conditions that do not quite meet their 
specifications, and 

3. To call the partial evaluator for each new subtree that is constructed in the AST. 

Contributions 

AOG makes several contributions.  
• It uses tag-directed transformations to exploit knowledge and operations that are 

ill suited to pattern-directed transformations.  



• It stages transformation phases so that each is organized to achieve a narrowly 
defined translation or optimization purpose.  

• It provides event-driven tags that allow for opportunistic optimizations as well as 
for interdependent, anticipated optimizations that can be organized into stages to 
assure consistency.  

• It reasons over the domain specific operators and operands early in the 
translation process to produce tags that can thereby take advantage of that domain 
specific knowledge later in the optimization process when, conventionally, all of 
the domain specific knowledge would have been translated away.  

• It localizes pattern-directed transforms and component definitions to specific 
abstractions within an inheritance hierarchy thereby reducing the opportunity for 
them to explode the search space by being applied in inappropriate situations.  

• It uses a schema language to insulate the transformations from the physical details 
and variations in the AST. 

Related Research 

This work bears the strongest relation to Neighbors work. [10] The main 
differences are 1) the fact that the AOG pattern-directed transformations are 
organized into an inheritance hierarchy which guides the choice of which 
transformations to try, and 2) the use of the tag-directed approach for program 
optimization. Neighbors uses pattern-directed transformations during his 
optimization. 

The work bears a strong relationship to Kiczales' Aspect Oriented programming at 
least in terms of its objectives but the optimization machinery appears to be quite 
different. [9] Kiczales' optimization mechanism seems not to be distributed over the 
AST and the optimization algorithms do not appear to be manipulated by the 
transformations. In contrast, the AOG’s tags are distributed over the program and they 
undergo transformations as the generator reasons about the domain, the program, and 
the optimization tags. 

This work is largely orthogonal but complementary to the work of Batory. [1] 
Batory optimizes his type equations to choose the optimum components from which 
to assemble classes and methods. AOG inlines and interweaves the bodies of methods 
invoked by compositions of method calls (i.e., expressions). Thus, Batory’s 
generation focus is at the class level and AOG’s is at the instance level. For details of 
the relationship see [6]. 

AOG and Doug Smith's work are similar in that they make heavy use of domain 
specific information in the course of generation. [11] They differ in the machinery 
used. Smith's work relies more heavily on inference machinery than does AOG. The 
reasoning that AOG does is narrowly purposeful and is a somewhat rare event (e.g., 
the transformation that splits the loop in the MMX example above does highly 
specialized reasoning about loop limits). However, partial evaluation (a form of 
inference) is heavily used in AOG, which is how three level if-then-else expressions 
(which are interweavings of the definitions of W, Row, Col and 
ConvolutionOp) get reduced to expressions like "a[im1,j]*(-2)". 



The organization of the transformations into goal driven stages is similar to 
Boyle’s TAMPR [7]. However, Boyle does not use tags. 

The schema language is most similar to the work of Wile [14, 15] and Crew [8]. 
Popart leans more toward an architecture driven by compiling and parsing notions. As 
such, it is influenced less by logic programming. On the other hand, ASTLOG is 
more similar to the AOG schema language in that it is heavily influenced by logic 
programming. However, ASTLOG’s architecture is driven by program analysis 
objectives and is not really designed for dynamic change and manipulation of the 
AST. It assumes that its target is a set of link files produced by a compile and link 
operation, thereby producing a batch-oriented model of AST manipulation. Such a 
model is not well suited to dynamic manipulation and change of the AST under the 
control of a transformation-based generator.   

There are a variety of other connections that are beyond the space limitations of the 
paper. For example, there are relations to metaprogramming [14], logic programming 
based generation, formal synthesis systems (e.g., Specware) [12], deforestation [13], 
transformation replay [2] and other procedural transformation systems (e.g., Refine). 
The differences are greater or lesser across this group and broad generalization is 
hard. However, the most obvious general differences between AOG and most of these 
systems is AOG’s use of transformations that operate in the optimization problem 
domain and are triggered based on optimization-specific events. Additionally, the 
AOG control structure is unusual. The overall optimization process behaves like an 
abstract algorithm where the algorithmic steps are stages and where the details of the 
steps (i.e., what operations are performed, what part of the AST they affect, and when 
they get called) are determined by tags on the AST itself. In addition, the event driven 
transforms behave like interrupts that allow for operations whose invocation details 
cannot be planned in advance and whose effect is largely simplification. 

Conclusions 

AOG is being developed to study of the effects of architectural variations of 
generators on programming leverage, variability, performance, and search space size. 
While still early, it has demonstrated that some operators and types can be deeply 
factored to allow highly varied re-compositions while simultaneously allowing the 
generation of high performance code without huge search spaces.  
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