
1

Reuse Technologies & Niches

Ted J. Biggerstaff

I want to characterize various categories of reuse technologies in terms of their underlying architectures,
kinds of problems that they handle well, and the kinds of problems that they do not handle well. In the
end, I want to express these operational envelopes as descriptions of their niches. Because of the
significant architectural differences in the various technologies, it is difficult to find a common
framework from which to compare them. However, there are several operational parameters on which
they can be compared and that distinguish the key operational characteristics that are of most importance
to the user of the technology.

2

The scaling plane

Vertical

(Programming

leverage)

Horizontal (Optimality of fit)

Feature variabilityOne-size
fits all

Customized

Small, low
payoff

Large, high
payoff

R
eu

se
 P

ay
of

f

As an organizing framework for the niches, I will characterize them along two important dimensions of
scaling: 1) how well they scale up in terms of raw size and thereby programming leverage, which I will
call vertical scaling, and 2) how well they scale up in terms of feature variation, which I will call
horizontal scaling. These two dimensions are typically fundamentally opposed to each other.

In some sense, vertical scaling is a productivity measure that defines how many units of functionality one
gets out per unit of effort. Big reusable parts increase this measure of efficiency and therefore, this
dimension correlates strongly with component size. While there are other parameters (i.e., the percentage
of domain coverage with respect to an application), component size is a servicable if approximate proxy
for vertical scaling.

On the other hand, as parts increase in size they incorporate more and more design decisions, which we
can view as limits on the contexts in which they fit, on the contexts in which they meet all of the
requirements. Thus, the horizontal dimension is a measure of the reusability of the components across a
range of different applications. The more customized a component is to a narrowly defined set of
requirements, the less likely it is to be reused and therefore, the less likely there will be enough reuses of
it to recoup the cost of building it.

The notional plane defined by these two dimensions is the scaling plane and serves to emphasize the key
differentiating features and characteristics of various technological approaches to reuse. Of course, there
are other important dimensions in this notional space, notably the performance of the target code. And we
will consider performance as a factor that serves to constrain the niche footprint in the scaling plane.

3

Reuse Technologies
n Concrete components

F e.g., Functions, OOP, Frameworks, DCOM, …

Concrete components are those that 1) are written in conventional programming languages, 2) are
internally immutable, and 3) represent a one-size-fits-all style of reuse. They include such categories as
functions, Object Oriented classes, frameworks, and COM-like middleware components. They often
exhibit serious reuse flaws such as inadequate performance, missing functionality, inadequately
populated libraries, there are design incompatibilities, etc.

Except for a few niches, concrete components have not lived up to their hype. I believe that this is a
fundamental flaw of concrete components that arises from the programming languages in which they
are written. Conventional programming languages (e.g., C, C++, Java, etc.) all require too many low
level, detailed decisions to be made too early. And thus, concrete components typically do not fit their
requirements very well.

In particular, ….

4

Concrete Components

n Small components don’t work well
u Assembly work per unit payoff is low

n Small components specialized niches OK
u Overhead masked by human response (e.g., UI)

u Standards or domain narrowness mitigate

n Big components work well
u Programs or subsystems

u High programming leverage

u Payoff dominates overhead costs

Small, broad-spectrum: Libraries of random small, broad-spectrum components work poorly well
because 1) the effort involved in assembling them into applications mitigates the profit gained by reusing
them and 2) broad-spectrum components don’t really address the specialized requirements of most
application areas. This does not mean that you should not use libraries. It means that you should not
expect them to cover 80 or 90% of your application. If you get a 10% coverage, you are lucky.

Small components with mitigating circumstances: The second niche is smaller-scale components (e.g.,
as UI components) that can achieve high customization via compositionally induced variation and yet
still exhibit adequate performance in spite of the compositionally induced overhead. Often this is because
the overhead is masked by other factors such as the human response times. This niche trades
performance degradation (which may be masked) for high levels of adaptability. In addition, there are
often direct manipulation tools that reduces the effort of assembling the components thereby boosting the
reuse payoff. The UI is a good example of this class. SEE NEXT SLIDE.

Specialized niche: The third niche is where standards or domain specific requirements have been so
narrowly defined that one-size-fits-all components are satisfactory. Their weakness is shelf life since
their reusability declines as the standards are undermined by change. Again, UI components are a good
example of this a niche determined by narrow standards and a library of actuarial and statistics routines
would be an example of a domain specific niche.

Very-large scale: However, concrete components do succeed well in a few niches. The first niche is very
large-scale components that just happen to fit the programmer’s needs or are designed to a standard
that predestines a good fit. These trade customized fit and broad reusability for high programming
leverage. The downside of very large components is that it is just too expensive to build libraries of them
that cover all circumstances. The requirements are spread too broadly across the field of applications.

5

Tools can make the assembly process low cost and therefore boost the profit due to reuse. So,
you get a reasonable profit from reuse, good horizontal scaling through the variability
allowed by composition, a tool that makes composition of components cheap, and a context
of usage were performance degradation induced by the generality of the componentry is
masked by other factors, such as slow human response times.

Example: UI Controls

6

Niches in the scaling plane

Vertical

(Programming

leverage)

Horizontal (Optimality of fit)

Subsystem
Level

Components

Conventional
Components

So, in conclusion, there are a couple of islands where concrete components work well or, at least,
acceptably: Program or subsystem level components, and specialized islands where tools or
circumstances allow a reasonable combination of vertical and horizontal scaling without onerous costs.
But these are rare.

Technical basis –

Piece part representation = programming language constructs

Assembly mechanism = programming language control structures

So, what can be done about these downsides???

7

Essence of The Technology

Class Elements Operations

Concrete Reuse PL Struct. Hand Assem.

8

Reuse Technologies
n Concrete components

F e.g., Functions, OOP, Frameworks, DCOM, …

n Compositionally Derived Components
F e.g., Templates, GenVoca, …

A fundamental difficulty of concrete components is the tension between optimality of component fit
(horizontal scaling) and the need to scale the components up in size (vertical scaling) to achieve higher
levels of programming productivity. People have begun to ask the question as to whether there is some
way to factor the reusable library along lines orthogonal to conventional programming component lines
(that is, orthogonal to subroutines, classes, methods, objects, etc.) such that the factors represent aspects
of the design that can be assembled in different ways to get greater horizontal scalability while still
retaining reasonable levels of vertical scaling. That is, one can use big components but generate
variations on the general design to better fit the context in which they will be used. This would eliminate
problems like poor performance, missing functionality, inadequately populated libraries, incompatible
data organizations.

I am calling this class of work compositionally derived components. Templates and abstract classes are
a weak form of this notion but they are overly restrictive and make accomplishing this kind of
factorization extremely painful. There is work along these lines going on in the object oriented
community and the generator community. Don Batory’s GenVoca work (in the generator community) is
a good example of this class of “reuse based generation system.” There are very similar ideas being
worked on in other research communities such as Notkin and VanHilst in SE and a number of people in
the OO community.

9

So, let’s look at an example. We want to generate a two or three related of classes and all of
their methods, which will provide a degree of vertical scaling. In addition, we want to be able
to horizontally scale these parts by varying elements of their internal design such as, 1)
whether or not they are represent concurrently shared data structures that must have some
synchronization machinery, 2) the actual organization of the data structure, whether the data
structure is persistent or transient, and so forth.

In Batory’s GenVoca approach, these factors are expresses as layers in a layers of
abstraction model. For any specific instance of the classes, a type equation describes the
order of the layers. That is each layer encapsulates one and only one abstraction or feature of
the target component. The top layer encapsulates synchronized deque-ness but defers making
any design commitments with respect to other features such as boundedness or exact container
characteristics. Each lower layer will introduce a new design decision that focuses on a
(ideally) singular design decision. The layers are composed (or stacked) by writing a type
equation that determines each design decision (i.e., refines the Realm by picking a Component
implementation for that Realm). This is a top-down refinement strategy. It assembles the code
for classes and methods by weaving together slices of the code drawn from the specific
Components in the stack. Each component (e.g., dlist) is a step-wise refinement that maps a
more abstract type into a more concrete type (e.g. container -> doubly linked list) adding detail
as the refinement proceeds.

This holds some promise as a way to get around some of the problems of concrete component
reuse, that is to say, to be able to get some degree of vertical scaling while improving the
degree of horizontal scaling.

So where does this work well and where does it not work so well?

GenVoca derives a container

deque_usm = deq_sync [deque2c [dlist [avail [heap [transient]]]]];

Container
Class

Element
Class

dlist

heap

deq-sync

deque2c

avail

transient

Refinements

List elements from heap

Deque

Synchronized deque

Container

Doubly linked list

Managed linked list

Transient elements

Type
Equation

10

Compositional Derivation
n Example domain: Data structures

n Benefits:
u Improve reuse by raising level of abstraction

u Combinatorial amplification of library (horz.)

u Generation is fast

n Shortcomings:
u Level of abstraction still low

u Large grain components mitigate horz. scaling

u Dependencies limit extensibility

u Inter-component optimization difficult

Good points: Programming leverage through raising level of abstaction.

Combinatorial amplification of the reuse library mitigating the costs associated with trying to cover the
small ground (horizontal scaling) with concrete components. Thus, increases the payoff of reuse.

The generator is relatively fast (compiler like performance).

Shortcomings: Raises the level of abstraction (and therefore vertical scaling) but not very far. We are
now programming to more abstract data structures but not as abstract as we would really like.

Technical basis –

Piece part representation = abstracted programming language constructs – not all that abstract and
relatively restrictive still

Assembly mechanism = inlining of programming language control structures

Optimization or reorganization mechanism = only via choosing alternative assembly of piece parts

And there is no reorganization or reweaving strategy

Does not have a good mechanism for dealing with global, inter-component the dependencies. Design
logic is isolated by the components and that may cause inefficiencies. Code integration and sharing
among distant layers not possible (or at least, very hard) -- that is abstraction layers survive in the
application code and optimizations that might result from clever merging and reorganization of the low
level code is not possible.

Factoring does not always completely separate components making them independent. Dependencies
between supposedly independent components may be implicitly encoded with the components. In some
sense, this is using engineering to handle hard dependency problems. For example, an upper level
component may need to know the programming language type and size for a storage structure that will be
local to a block of code that it will generate. But a lower level component may be responsible to
determining that information. An ad hoc inter-component communication protocol has to be engineered
to send that information from one component to the other. Conventional programming constructs like
parameters and returned values do not fit the model well.

11

Essence of The Technology

Class Elements Operations

Concrete Reuse PL Struct. Hand Assem.

Composition Abstract PL Inlining

12

Niches in the scaling plane

Vertical

(Programming

leverage)

Horizontal (Optimality of fit)

Subsystem
Level

Components

Derived
Components

Conventional
Components

So, compositional derivation systems provide some improvement in our ability to simultaneously scale
vertically and horizontally.

However, if the horizontal variability of the software is not easy to isolate within a singular layer (or
equivalently, horizontal variability depends strongly on intra-layer dependencies) then the derived
component model does not work well for such cases. For example, a search performance requirement in a
high layer may have design effects in various layers. E.g., fast search of large containers may preclude
implementation of those layers as a doubly linked list even tho’ other requirements (e.g., fast insertion
and deletion) may suggest a doubly linked list implementation. Similarly, machine architectural
requirements may have global designs effects that require coordination of design variations within
multiple layers. For example, stringent search performance requirements might require restructuring the
design so that the search can be segmented and performed by multiple CPUS. Such design variations
introduce inter-layer dependencies that require coordinated changes within several layers. The
compositionally derived component strategy does not lend itself to this kind of horizontal scaling.

13

Reuse Technologies
n Concrete components

F e.g., Functions, OOP, Frameworks, DCOM, …

n Compositionally Derived Components
F e.g., Templates, GenVoca, …

n Pattern-directed transformation systems
F e.g., Draco, CAPE, IP, DMS, ...

Pattern-directed transformation-based generators allow greater degrees of customization (horizontal
scaling) than composition-based generators because they use language-based building blocks that are less
rigidly constrained than the components of composition generators. The underlying technology is usually
a transformation engine that allows the developers to define (reusable) rewrite rules that transform can
transform a program written in a domain specific language into a conventional programming language
like C. There are several example systems but I will focus on Jim Neighbors Draco as an exemplar of the
the class, not because I want to shill for Jim, but because it is a good exemplar, it is mature, has been
applied to many domains, and has been used to build a commercial product (CAPE).

14

Draco Domains

Abstractions:

Keys,Relations,
Attributes, …
Operations:

Search, Delete,
Add, Update,

Attach,
Detach, ...

Abstractions:
Cursor, Container,

Keys,Relations,
Attributes, …
Operations:

Search, Delete,
Add, Update,

Attach,
Detach, ...

Data Base

Relational
Algebra

Abstract Data
Types

C Code

Tuple Index

The basic Draco paradigm divides the world into domains each of which has its own mini-language (e.g.,
the relational algebra) in which programs can be written and components can be defined. In this
somewhat contrived example, the domains are the data base domain, the relational algebra domain, etc.
Within each domain, programs are written in abstractions and operations specific to that domain. For
example, the data base domain has abstractions of Cursor, container etc. and operators of search, delete,
etc.

The mini-languages are prescriptive (i.e., operational) rather than declarative. The generation paradigm is
based on rules that map from program parts written in one or more mini-domain language into lower
level mini-languages recursively until the whole program has been translated into the lowest level mini-
domain of some conventional programming language (e.g., C, C++, or Java). Between translation stages,
optimizations may be applied that reorganize the program for improved performance. These optimization
steps are highly effective within a single domain because domain knowledge can be used to effect the
optimization but they are far more difficult between domains.

15

Refinements

Data Base

Relational

Algebra

Abstract Data

Types

C Code

Tuple Index

Component: Insert(Value V, Container C)
{Refinement: Stack

Condition: LIFO(C)
Code: {Push(V,C)}}

{Refinement: Sorted Container
Condition: SortedOn(C, Value)
Assertion: SortedOn(C, Value)
Code: {Merge(V,C)}}

...}

DRACO refinements map the notation of one domain into the notation of one or more
conceptually lower level domains. This is a top-down strategy for deriving the details of the
code. In this example, the data base domain is mapped into the relational algebra, index, ADT
domains. This is probably a bit of a hokey example in which the domains are overly inclusive,
complex, and not particularly well thought out but it illustrates a variety of contrasting
refinements, pre-refinement enabling conditions and post-refinement assertions. In this case,
the data base instance might refine to a simple stack, a simple sorted container, or an indexed
relation depending on the conditions.

Please note that refinement mappings are not strictly hierarchical. In fact, domains are
frequently mutually recursive, which is the characteristic that makes DRACO like generational
behaviors impossible to accomplish using the constructs of conventional programming
languages (e.g., templates). Although refinements could probably be simulated with object
oriented constructs (e.g., subclassing), without domain specific optimizing transforms, the
performance would most certainly be abysmal and the parameter list “plumbing” of the
methods across diverse refinements would at best be excessively complex and at worst be
rococo.

Also, note that for reasons of compact presentation, I have taken some liberties with the
DRACO notational forms.

Now, cascades of refinements compiled directly and naively would likely generate very
inefficient code, so DRACO uses transformation to eliminate the inefficiencies introduced by
naïve generation (i.e., introduced because of the relative isolation of the individual refinements
in the cascade).

16

Domain to self:
Join(?Relation1, Empty_Relation, ?Attribute)
=>Empty_Relation
Select(?Relation1,TRUE_expression)
=>Relation1
Select(?Relation1,FALSE_expression)
=> Empty_Relation

Data Base

Relational

Algebra

Abstract Data

Types

C Code

Tuple Index

Optimizing Transforms

Transformations perform optimizations on domain notations, mapping a domain notation into
the same domain notation. These transformations are used to clean up the inefficiencies
introduced into generated code because of naïve code generation. Sweeping domain specific
optimizations are often possible, optimizations that would be impossible at the code level
because the higher level abstractions are no longer present at the code level. Trying such
optimizations at the code level would require the compiler to infer the higher level abstractions
from code, a generally impractical task. However, since DRACO’s transforms have the
domain specific abstractions in hand, they can therefore make transformations that often
eliminate large chunks of code.

Often transforms are optimizing inefficient machine generated code, the kind of code that a
person would never write but that program generators write all of the time. In the past, such
inefficient code (generated because the left hand does not know what the right hand is doing)
doomed generator code to poor performance. Domain specific transformations can eliminate
this deficiency and generate code that is as good as or nearly as good as hand tailored code.
The cost is slightly increased generation execution time.

This slide shows an example of optimizing transformations in the relational algebra domain.
The first example expresses the idea that any relational expression (Relation1) joined with the
empty relation can be replaced by the empty relation. Thus no join code need be included in
the target program in this case.

17

Pattern-Directed Transformations
n Example domain: communications protocols
n Benefits:

u Fine grain rules allow great horizontal scaling
u Mapping between language objects
u Powerful in-domain optimizations

n Shortcomings:
u Cross domain optimizations (interweavings) can

explode search space

These techniques achieve significantly greater degrees of custom component fit for the target application
(i.e., horizontal scaling) while simultaneously allowing scaling the size of the components. However, the
cost is reduced target program performance because while the rules that reorganize/optimize the program
at each stage (intra-domain optimizations) can, in theory, find the optimal reorganization, the search
space for inter-domain optimizations is very large. So in practice, target program performance is often
compromised. Nevertheless, there are many application domains for which the performance degradation
is not onerous or may be an acceptable tradeoff for the vastly increased programming leverage. The
CAPE system for generating communications protocols, which is based on DRACO [4], is an example of
a domain where the tradeoff is acceptable.

Technical basis –

Piece part representation = domain language-based entities

Assembly mechanism = translation and merging of language-based piece parts via pattern-based
mechanisms

Optimization or reorganization mechanism = only via pattern-directed mechanisms, which is a grossly
inefficient way to effect reorganizations and accommodate remote dependencies (explodes search space)

18

Essence of The Technology

Class Elements Operations

Concrete Reuse PL Struct. Hand Assem.

Composition Abstract PL Inlining

PD Generator DSL Struct. PD Xforms

19

Niches in the scaling plane

Vertical

(Programming

leverage)

Horizontal (Optimality of fit)

Subsystem
Level

Components

Derived
Components

Pattern
Directed

Conventional
Components

So, pattern directed generator systems extend the scaling significantly in both directions.

But there is still this problem of how to get inter-component optimizations without exploding the search
space so that the generators complete their work before the sun becomes a cold dark ember.

20

Reuse Technologies
n Concrete components

F e.g., Functions, OOP, Frameworks, DCOM, …

n Compositionally Derived Components
F e.g., Templates, GenVoca, …

n Pattern-directed transformation systems
F e.g., Draco, CAPE, IP, DMS, ...

n Reorganizing generator systems
u AO generator, AOP, ...

And now we are in the realm of speculation about the future.

So, I believe that we need some additional generation machinery. Over the last year or so, I have been
building a generator system to test the feasibility of doing inter-component reweavings without exploding
the search space. It is called the Anticipatory Optimization Generator because it allows the user to
abstractly anticipate interweavings and tell the generator about it. There is another similar effort called
Aspect Oriented Programming although the underlying mechanisms are quite different.

21

Problem: Antagonistic Goals

n High level operators and operands provide
programming leverage & variations

F E.g., (image ⊕ neighborhood) convolution

n But fracture and de-localize code pieces

Fb=((a ⊕ s)2 + (a ⊕ s’)2)1/2

F Needed optimizations: code sharing, re-org. & re-
weaving

n Conventional Optimization approaches
induce large search spaces

The central difficulty revolves around delocalization of information. [Letovsky and Soloway] If I factor the operators
and operands into highly general constructs, I can write combinatorially many compact expressions with them that
effectively form an infinite virtual library of reusable components, one component for each possible composite
expression. For example, the convolution operator ⊕ defines the general structure of the convolution computation, i.e.,
it is a sum of pixels within a neighborhood times weights. The characteristics of the neighborhood is not defined by the
convolution operator. They are defined by the template, s and s’, in the equation. That is , what are the dimensions of
the neighborhood, how are the weights calculated and what variables do they depend on, and what if any special cases
are there (e.g., are boundary cases processed differently from non-boundary cases). In this example, they are. S and sp
define all of these SPECIFICS of the convolution operation.

However, this means that the tightly integrated information needed by the compiler to generate high performance code
is split across many operators and operands. With current technology, compiling such expressions requires huge search
spaces of possible transformation sequences to assure finding the optimal localizations for high performance execution.

On the other hand, if I define less general operators and operands in which cross operator code is already localized for
performance reasons, the number of possible variations that can be produced by my generator drops precipitously and
my infinite virtual library very likely becomes a finite library.

In summary, the problem is trying to achieve three goals simultaneously; 1) factoring domain into high leverage
operators and operands, 2) compiling expressions of these operators and operands into high performance code, and 3)
doing the compiling without engendering a large search space that renders the compilation algorithms impractical.

22

AOG Features
n Schema language foundation

n Pattern-driven & tag-driven transforms
u Organized by inheritance type and by stage

u Tags capture non-pattern-driven knowledge

u Tags act like AST-localized interrupts for performing
optimizations

n TD’s are large-grain programmatic transforms

n Specialists: Partial evaluator & inference engine

n No explicit loops

n Performance with small search spaces

AOG is built in terms of highly purposeful, large-grain programmatic transformations, e.g., transforms that create,
place, and fuse loops. They operate on conceptual or logical patterns in an AST and achieve a level of insulation from
the physical details and variations in the AST via a “schema” expressed in a Prolog-like language. These schemas
perform pattern matching, parameter binding, enabling condition checking, and logical inference for the transforms.
The schemas are first class items which are created dynamically, stored within the AOG’s data structures, and executed
by the transformations. The schema language has the major Prolog operators as well as extensions required for the
generation task. It is fully backtracking thereby allows a schema execution to fail and then backup to the last choice
point to try the next choice. This allows schema executions to explore all possible bindings in search of the preferred
solution.

AOG does use conventional pattern-directed transformations for the initial stages of translation but they are organized
into an inheritance hierarchy based on operator and operand abstractions. They are also organized into translation
stages each of which seeks a narrowly defined translation purpose. (e.g., creating, placing and fusing loops).

For optimization stages, AOG uses tags on the AST to trigger transformations. They reorganize, merge, and share
code across DS operators, operands, expressions, and loops and do so at a level unknown in today’s optimizing
compilers. Because today’s compilers are working at too low a level of representation.

These tags use knowledge that is not easily determined from AST patterns and therefore, is not easily dealt with by
conventional pattern-directed transforms. (e.g., knowing that an if condition will be independent of a loop control
variable that will be generated). Transformations that are triggered by the tags directly re-organize the program in ways
that would be hard for pattern-directed transformations to discover. They would first have to perform some very hard
analysis (e.g., data flow and alias) and then have to discover a long chain of transformational miracles that choose the
“right” transformation out of many choices at exactly the “right” time in the chain. This is why conventional
approaches to optimizations beyond those performed by optimizing compilers engender exponential solution spaces.

The tags represent a distributed optimization plan that is created in the application domain space (largely), attached to
specific pieces of the AST and executed in the programming language domain. The tags behave like little local
interrupts that are waiting on certain local optimization events (e.g., substitutionofme, simplificationofme,
migrationofme, etc.) or global (i.e., broadcast) events (e.g., the event signalling the start of the next translation stage).

Rather than forcing all operations into a single rule-oriented operational form (e.g., “lhs=> rhs”), the AOG generation
tools are specialized to the task at hand. (“To a hammer, all problems look like nails.”) AOG uses narrowly
purposeful tools where it makes sense. For example, there is a partial evaluator which is invoked from the
transformations when ever they reorganize the AST. Similarly, a rule engine extension to the schema language is
invoke to perform simple, narrowly construed inferences (e.g., for incorporating branching logic in a loop body into
the loop control.

As a consequence of the anticipatory optimization implemented via the tags, the resultant code is high performance
without engendering huge search spaces.

23

Reorganizing Generators

n Benefits:
u Inter-component optimizations (reweavings)

u Small search space = reasonably fast

n Shortcomings:
u Technology immature

u Unclear how far it can be pushed

Technical basis –

Piece part representation = domain language-based entities

Assembly mechanism = translation and merging of language-based piece parts via pattern-based
mechanisms

Optimization or reorganization mechanism = tag-directed mechanisms mitigate the inefficiencies induced
by the pattern-directed paradigm and allow reorganization and reweaving via without search space
explosion.

24

Essence of The Technology

Class Elements Operations

Concrete Reuse PL Struct. Hand Assem.

Composition Abstract PL Inlining

PD Generator DSL Struct. PD Xforms

Reorg Generator Tagged DSL PDX & TDX

25

Niches in the scaling plane

Vertical

(Programming

leverage)

Horizontal (Optimality of fit)

Pattern
Directed

Reorganizing

Subsystem
Level

Components

Derived
Components

Conventional
Components

26

Reuse Technologies
n Concrete components

F e.g., Functions, OOP, Frameworks, DCOM, …

n Compositionally Derived Components
F e.g., Templates, GenVoca, …

n Pattern-directed transformation systems
F e.g., Draco, CAPE, IP, DMS, ...

n Reorganizing generator systems
u AO generator, AOP, ...

n Inference-driven generator systems
u Kids, Synapse, ...

27

Inference-Based Generators

n Paradigm: Schema + rules of inference

n Example: Divide-and-conquer schema
u Broad framework for solution

n User specification: Formal specification
(e.g., predicate calculus)

Schemas more abstract than the Draco or AOG schema. Divide and conquer is a method by which to
derive an algorithmic skeleton whereas Draco and AOG use concrete skeletons for their schemas.

Inference-based generators assemble components by logical fitting rather than structural fitting.

Of course to do this, one has to have a complete, formal specification of the program.

Technical basis –

Piece part representation = derived abstractions (I.e., the schema is not a concrete a priori structure but is
custom derived based on the nature of the specification.

Assembly mechanism = translation and merging of language-based piece parts via inference processes,
not connecting concrete structures but custom deriving the connective plumbing by inference

Optimization or reorganization mechanism = optimization (to the degree it can be done practically) is
inherent to the inference rules (I.e., initimately integrated into the inference rules for creating, deriving
and integrating the schemas)

28

Inference-Based Generators

n Example: Kids generator
n Benefits:

u Highest levels of horizontal scaling

n Shortcomings:
u Formal specifications require ultra-stable

application
u Requires well-understood domain with deep theory
u Immaturity and narrow => low vertical scaling

Low vertical scaling because the programming leverage is very high but it is restricted to a very narrow
domain. Thus, this is more like a point solution. If your domain is right on the point, you get orders of
magnitude of leverage for that point and effectively zero outside of that small point region.

29

Essence of The Technology

Class Elements Operations

Concrete Reuse PL Struct. Hand Assem.

Composition Abstract PL Inlining

PD Generator DSL Struct. PD Xforms

Reorg Generator Tagged DSL PDX & TDX

Infer Generator DSL+Logic Inference

30

Niches in the scaling plane

Vertical

(Programming

leverage)

Horizontal (Optimality of fit)

Subsystem
Level

Components

Derived
Components

Pattern
Directed

Reorganizing

Inference
BasedConventional

Components

31

Reuse Technologies
n Concrete components

F Limited islands of successful reuse

n Compositionally Derived Components
F More horizontal scaling but no inter-part reweaving

n Pattern-directed transformation systems
F Extends both but big search space for reweaving

n Reorganizing generator systems
u Reweavings gain horiz. scaling but immature

n Inference-driven generator systems
u Greatest horiz. scaling but formality limits use

32

References

n Biggerstaff, A Perspective of Generative Reuse,
Annals of Software Eng., 1998

n Biggerstaff, Fixing Some Transformation
Problems, Proc. Of Automated Software
Engineering, 1999.

n Batory et al, Scalable Software Libraries,
Foundations of SE, 1993

n Neighbors, Draco: A Method for Engineering
Reusable Software Systems, in Software
Reusability, 1989.

33

The End

34

Niches in the scaling plane

Vertical

(Programming

leverage)

Horizontal (Optimality of fit)

Subsystem
Level

Components

Derived
Components

Pattern
Directed

Reorganizing

Inference
BasedConventional

Components

